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1. Introduction 
 

Egypt is the largest rice producer in the 

Near East region. Rice (Oryza sativa) 

production was probably introduced into 

Egypt in the 7th Century. On the basis of 

nutrition value, rice is rated as second 

important cereals after wheat (RRTC, 

2014). In 2018, the rice harvest declined 

by over 20 percent compared to last year 

and the average, mostly due to a decline 

in the planted area from 850,000 hectares 

in 2017 to 762,000 hectares. Further 

declines in rice planted area are projected 

in 2019 as farmers are expected to 

continue shifting to crops with more 

competitive government procurement 

prices such as cotton and maize (FAO, 

2018). The grain yield/unit area of rice is 

reducing due to various factors among 

which diseases are one of the major 

factors. Many diseases and disorders can 

affect rice plants during the growing 

season under the local Egyptian 

conditions which affect the production of 

grain yield and quality. Grain 

discoloration of rice is a complex disease 

due to infection by certain 

microorganisms on the glumes, kernels, 

or both. The fungi that are reported to be 

associated with discoloration of grains are 

Bipolaris oryzae, Alternaria padwickii, 

Pyricularia oryzae, Fusarium 

verticillioidies, Fusarium grminearum, 

Nigrospora oryzae, Epicoccum nigrum, 

Curvularia spp and Phoma sorghina 

(Ahmed et al., 2013; Phat et al., 2005; 

Ou, 1985). One of the most important rice 

disease is brown spot caused by the 

fungus Helminthosporium oryzae Breda 

de Hann = Cochiobolus miyabeanus (also 

known as Bipolaris oryzae) Breda de 

Hann  (Kumar et al., 2011; Harish et al., 

(2008). The pathogen causes infection on 

all growth stages of rice plant from 

nursery to field and results in significant 

yield and grain quality losses. In Egypt, 

the second important disease after blast 

disease is brown spot; it can cause yield 

loss and affects the quality and the 

number of grains (El-shafey et al., 2018; 

Elshenawy et al., 2018). Fusarium 

moniliforme which is later identified as 

F. fujikuroi, the anamorph stage is F. 

verticillioidies caused Bakanae disease, 

observed for the first time at 2001 season 

on Giza 177 and Sakha 101 at Kafr 

ElSheik governorate (Gabr, 2010). F. 

verticillioidies was isolated from 

Egyptian rice grains cultivars and root 

rots (Makhlouf & Gabr, 2015). 

Gibberella zeae as a teleomorph of 

Fusarium graminearum, it causes head 

blight of small grains including rice, 

wheat and barley. In rice it can turn 

affected grains red and cause brown 

discoloration in certain areas on the grain 

or the entire grain surface. Infected grains 

are light, shrunken and brittle (Lee et al., 

2009). The differentiation among the rice 

fungal pathogens by traditional methods, 

involve cultural characters, physiological 

and microstructure measurement are 

labor-intensive and time-consuming but 

still most accurate too. For example, 

Fusarium isolates from different plant 

species were identified on the basis of 

morphological characteristics (Mandhare 

et al., 2011; Nath, 2011; El-Kazzaz et al., 

2008). Ribosomal DNA (rDNA) regions 

have been used for taxonomic and 

phylogenetic studies because sequence 

data are available and because they 

contain both variable and conserved 

regions, allowing discrimination at the 

genus, species, or intra-specific levels. 

The non-coding regions of rDNA have 

been used as variable region. The internal 

transcribed spacers (ITS) of the rDNA 

can display variation within genera and 

used in the differentiation of species 

(Moore et al., 2011; O’Donnell et al., 

1998, 2000). A reduction or elimination 

of synthetic pesticide applications in 

agriculture is highly desirable. One of the 

most promising means to achieve this 
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goal is by the use of biocontrol agents for 

disease control (Chet & Inbar, 1994). 

Antagonists belonging to the genus 

Trichoderma are among the most 

commonly isolated soil fungi. Due to 

their ability to protect plants and contain 

pathogen populations under different soil 

conditions, these fungi have been widely 

studied and commercially marketed as 

biopesticides, biofertilizers and soil 

amendments (Vinale et al., 2008). 

Screening studies in-vitro showed that 

Trichoderma spp. had high antagonistic 

effect against mycelia growth such as F. 

moniliforme, F. oxysporum, Rhizoctonia 

solani, Alternaria alternate 

(Bhattacharjee & Dey, 2015; Mustafa et 

al., 2009; Adams, 1989; Harman et al., 

1980). In Iran, Khalili et al. (2012) found 

that two strains of T. harzianum 

significantly controlled the brown spot 

disease caused by Bipolaris oryzae in rice 

and increase of seedling growth. The 

objectives of the present investigation 

were (i) to isolate and identify fungal 

pathogens from rice grains varieties 

showing grain discoloration symptoms 

based on morphological characteristics, 

(ii) to characterize and confirm 

identification of isolated fungal 

pathogens through molecular PCR based 

methods using DNA nucleotide sequence 

of internal transcribed spacer (ITS) 

region, (iii) to examine the biocontrol 

activities of T. harzianum isolates against 

isolated fungal pathogens, (IV) to study 

the effect of T. harzianum isolates on 

naturally infected rice grains and enhance 

grain germination. 

 
2. Materials and methods 
 

2.1 Isolation and morphological 

identification   

One hundred of rice grain samples were 

obtained from Rice Research and 

Training Center (RRTC), Sakha, Kafr El-

Sheikh, Egypt. The collected grains from 

four cultivars (Giza 177, Giza 179, Sakha 

101 and Sakha 106) were washed in 

running tap water, then surface sterilized 

in 1% sodium hypochlorite for 2 

minutes, then rinsed in sterile water. The 

surface sterilized grains were dried on 

sterilized filter paper, then plated on 

potato dextrose agar medium (PDA), 

plates were incubated at 25°C for 5 days. 

The developed fungi were purified by 

single spore isolation, and then sub 

cultured on PDA slants, kept at 4°C 

(Ilyas & Javaid, 1995). The different 

fungal isolates were identified based on 

the morphological characteristics and 

microscopic examination. Temporary 

slides were also prepared and observed 

under compound light microscope for 

proper identification. The fungal isolates 

were identified to species level, wherever 

possible, following the appropriate Keys 

(Manamgoda et al., 2011; Mew & 

Gonzales, 2002; Mew & Misra, 1994; 

Agarwal, 1989; Ellis, 1980; Booth, 1971; 

Barnet, 1962). 

 

2.2 Molecular identification 

2.2.1 Isolation of genomic DNA from 

fungal isolates 

Genomic DNA was extracted using a 

rapid mini preparation procedure 

(Shahda Wafaa et al., 2015; Edel et al., 

2001). Isolates were grown for 5-15 days 

on PDA plates. 1 mL of lysis buffer (50 

mM Tris-HCl (pH 7.5), 50 mM EDTA 

and 3% SDS) was added to the plate and 

the mycelium was scraped with a spatula. 

500 µL of buffer mixed with mycelium 

was recovered in a microtube and mixed 

using a vortex shaker. The microtubes 
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tubes were incubated at 65ºC for 10 min 

and centrifuged at 16099 xg for 10 min at 

4°C. The supernatants were transferred to 

new microtubes and the DNA was 

precipitated by adding 0.5 volume of 3M 

sodium acetate and one volume of ice-

cold isopropanol. Microtubes were gently 

inverted three times and centrifuged at 

16099 xg for 15 min at 4ºC. The 

supernatant was discarded and the pellet 

was rinsed with 300 µL of 70% ethanol. 

After centrifugation at 16099 xg for 5 

min at 4ºC, the ethanol was discarded. 

The DNA pellet was air-dried, dissolved 

in 100 µL of TE buffer (10 mM Tris- 

HCl, pH 8.0 and 1 mM EDTA) and 

stored at 4ºC until use. 

 

2.2.2 Molecular characterization based 

on internal transcribed spacer 

Molecular identification of fungal 

cultures were carried out based on 

conserved ribosomal internal transcribed 

spacer (ITS) region (Moore, et al., 2011). 

We amplified the ITS regions between 

the small nuclear 18S rDNA and large 

nuclear 28S rDNA, including 5.8S rDNA 

using universal primer pairs ITS1 (5-

TCCGTAGGTGAACCTGCGG-3) and 

ITS4 (5-TCCTCCGCTTATTGA 

TATGC-3). The PCR amplification was 

carried out in a total volume of 25 μL 

containing 3 μL of template DNA, 12.5 

μL PCR Green Master Mix (Thermo 

Scientific™), 0.5 μL of each primer (10 

pmol) and 8.5 μL molecular grade water. 

The amplification cycle consists of an 

initial denaturation at 95°C for 1 min 

followed by 35 cycles at 94°C for 30s, 

55°C for 2 min, and 72°C for 1 min and a 

final extension at 72°C for 10 min. 

Amplified PCR products were separated 

on 1.5% agarose gel, in 1X TAE buffer at 

65 V for 15 min. 

 

2.2.3 Sequencing of amplified ITS 

region, alignment and phylogenetic 

analysis 

The amplified fragment of ITS1-5.8s and 

ITS2 region (500-700 bp) of 10 selected 

isolates were sent for sequencing 

(Macrogen, Scientific Services 

Company, Korea). Identification of 

isolates were confirmed by applying 

Basic Local Alignment Search Tool 

(BLAST search) on National Center for 

Biotechnology information (NCBI) site 

(http://www.ncbi.nlm.nih.gov) using the 

obtained sequences of the amplified 

regions. Alignments were done by using 

Molecular Evolutionary Genetics 

Analysis version 7 (MEGA 7) software. 

Phylogenetic tree was constructed using 

neighbor-joining (NJ) method from the 

CLUSTALW alignment (Kumar et al., 

2016). The obtained sequences were 

compared with different international 

fungal strains obtained from Genbank 

with accession numbers (MK409313), 

(MK409312), (MK409311) and 

(MG182681) for F. graminearum, 

(MG820082), (MH591464), (KT211540) 

and (KJ598858) for F. verticilliodies and 

(GU373634), (JX256415), (MF185132), 

(KU499544) and (MK051170) for B. 

oryzae. Sequences obtained in this study 

were deposited in European nucleotide 

archive for accession numbers. 

 
2.3 Biological control 

2.3.1 Antifungal activity of T. 

harzianum against isolated rice fungi 

Two isolates of T. harzianum (Tr1) and 

(Tr2) were used in this study. The isolate 

http://www.ncbi.nlm.nih.gov/
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(Tr1) was obtained from soil collected 

from Kafr ElSheik Governorate and the 

isolate (Tr2) was isolated from rice grain 

samples (Sakha 101) cultivar. These two 

isolates of T. harzianum were used 

against fungal isolates F. graminearum 

(F.g.101), F. verticilliodies (F.v.101) and 

B. oryzae isolates (B.o.101). Plates of 

PDA medium were prepared; each plate 

was inoculated with a 0.5 cm PDA disk 

of each T. harzianum isolates on the 

periphery of the plate. One day after, 

each of these plates were inoculated, on 

the other side with a si`milar PDA disk of 

ten days old culture of the tested fungi F. 

graminearum (F.g.101), F. verticilliodies 

(F.v.101) and B. oryzae isolates 

(B.o.101).  The plates were incubated at 

25°C. three replicates were used for each 

treatment. Plates inoculated with the 

tested pathogenic fungus served as 

control. Growth diameters of the tested 

fungi growing with T. harzianum were 

measured compared with the control (the 

treated fungi only) (Desai et. al., 2002).  

The percent growth inhibition of a rice 

pathogen was calculated according to 

Abdel-Fattah et al. (2007) by using the 

following equation:  
 

X= 100 ـــ [(G2/G1) x 100] 
 

Where, X was the percentage of 

reduction in mycelia growth, G1 was the 

averaged growth of pathogenic fungus in 

control plates, and G2 was the averaged 

growth of pathogenic fungus in treated 

plates. 

 

2.3.2 Effect of T. harzianum isolates on 

naturally infected rice grains 

Spore suspension of the two T. 

harzianum isolates was prepared from 8 

days old culture of the isolates on PDA. 

The plate (9 cm diameter) was flooded 

with 10 mL of sterilized distilled water 

and shaken for a few minutes. Two 

hundred rice grains of each cultivar were 

sterilized in 1% sodium hypochlorite for 

2 min., rinsed in distilled water then 

surface dried, and then soaked in a 

conidial suspension of T. harzianum 

isolates. The soaked grains were dried 

and placed on PDA in Petri dishes and 

kept at room temperature (20-25°C) for 8 

days. Sterilized grains only served as a 

control (Abdel-Fattah et al., 2007).   

 

 

3. Results 

3.1 Isolation and identification of 

fungal isolates 

During the present investigation, two 

different genera of fungi were isolated 

from grains of four rice varieties (Giza 

177, Giza 179, Sakha 101 and Sakha 

106). The different fungal species were 

showing grain discoloration symptoms. 

Ten fungal isolates were initially 

identified as Fusarium spp. and Bipolaris 

spp. (Table 1). Based on their 

morphological characteristics; colony 

morphology, conidial, conidiophores and 

growth pattern, the isolates were 

identified as Bipolaris oryzae, Fusarium 

verticilliodies and Fusarium 

graminearum (Figure 1).  

 

3.2 Molecular identification 

3.2.1 Molecular characterization 

through ITS region and sequence 

analysis 

The ITS region from the ten fungal 

isolates were sequenced using ITS1 and 

ITS4 universal primers. The resulting 
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partial DNA sequences were analyzed 

using BLAST tool at the National Center 

of Biotechnology and Information site 

(http://www.ncbi.nlm.nih.gov). The 

search revealed that, the nucleotide 

sequences of the ten fungal isolates were 

identical to those of B. oryzae (2 

isolates), F. graminearum (4 isolates) 

and F. verticilliodies (4 isolates). The 

homology of B. oryzae, F. graminearum 

and F. verticilliodies isolates to the 

Genbank strains reached 99%. Sequences 

were submitted to Genbank and given 

accession numbers stated in Table (2).  

 
Table 1: Pathogens isolated from discolored grain of rice cultivars. 

 
 

Isolate code Cultivar   Isolated pathogens 

F.g.177 

F.v.177 

B.o.177 

Giza 177 

Fusarium graminearum 

Fusarium verticilliodies  

Bipolaris oryzae 

F.g.179 

F.v.179 
Giza 179 

F. graminearum  

F. verticilliodies 

F.g.101 

F.v.101 
Sakha 101 

F. graminearum  

F. verticilliodies 

F.g.106 

F.v.106 

B.o.106 

Sakha 106 

F. graminearum 

F. verticilliodies 

B. oryzae   

 

Table 2: GenBank accession numbers and laboratory code of partial 

ITS region of ten isolates. 
 

 

Laboratory code Accession number 

F.g.177 MK450464 

F.v.177 MK450465 

B.o.177 MK450466 

F.g.179 MK450467 

F.v.179 MK450468 

F.g.101 MK450469 

F.v.101 MK450470 

F.g.106 MK450471 

F.v.106 MK450472 

B.o.106 MK450473 

 

 
Figure 1: Morphological characteristics of seed born fungi from rice grains 

(A, D) Fusarium graminearum, (B, E) Fusarium verticilliodies and (C, F) 

Bipolaris oryzae. 

http://www.ncbi.nlm.nih.gov/
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3.2.2 Alignment and phylogenetic 

analysis 

Alignment of the ITS region nucleotide 

sequences of ten fungal isolates with the 

ITS region nucleotide sequences of other 

fungal isolates collected from the 

GenBank was carried out utilizing 

CLUSTAL W (1.82) 

(http://www2.ebi.ac.uk/clustalw; Thomp-

son et al., 1994) at which MEGA version 

7 (Kumar et al., 2016) was used to 

generate the Bootstrap neighbor-joining 

tree. Data illustrate that, there are 

interferences among our fungal isolates 

F. graminearum, F. verticilliodies, B. 

oryzae which isolated from different rice 

varieties and the identified fungal strains 

collected from GenBank except the 

isolate F. verticilliodies MK450472 

(Sakha 106) which had a unique cluster 

based on constructed phylogenetic 

analysis (Figures 2 and 3). 

 

3.3 Biological control 

 

3.3.1 Antifungal activity of T. 

harzianum against isolated rice fungi 

Data from the dual culture test in Table 3 

showed that although the linear growth 

of both tested fungal isolates (B. oryzae, 

F. verticilliodies and F. graminearum ) 

and T. harzianum Tr1 and Tr2 on single 

culture plates increased after inoculation, 

the linear growth of the two isolates of T. 

harzianum were more rapid than that of 

tested rice fungi. The highest growth 

inhibition was exhibited by T. harzianum 

Tr2 and Tr1 isolates against F. 

graminearum (76.77% and 76.74% 

respectively), followed by F. 

verticilliodies. The least growth 

inhibition was observed by B. oryzae 

using Tr2 and Tr1 isolates (53.33% and 

50.0% respectively) compared to the 

control (Figure 4).

 
 

Figure 2: Phylogenetic tree of Fusarium graminearum and Fusarium verticilliodies isolates 

obtained in this study compared with three ITS sequences collected from Genbank (MK409313), 

(MK409312), (MK409311), (MG182681), (MG820082), (MH591464), (KT211540) and 

(KJ598858). 

 

http://www2.ebi.ac.uk/clustalw
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Figure 3: Phylogenetic tree of Bipolaris oryzae isolates obtained in this study compared with 

three ITS sequences collected from GenBank (GU373634), (JX256415), (MF185132), 

(KU499544) and (MK051170). 

 

 

Table 3: Antagonistic effect of T. harzianum against B. oryzae, F. verticilliodies, F. graminearum on PDAa. 
 

 

Isolates 
linear growthb (cm) *Growth inhibition% 

Control T. harzianum Tr1 T. harzianum Tr2  T. harzianum Tr1 T. harzianum Tr2 

B. oryzae 3.0 1.5 1.4 50.0 53.33 

F. verticilliodies 5.6 1.7 1.6 69.64 71.42 

F. graminearum 4.3 1.0 0.9 76.74 76.77 
 

aEach value represents the mean of 3 replicates. b Distance between disk’s center and the margin of the 

colony. *Growth inhibition of three major seed-borne fungal pathogen on PDA medium. 

 

 

 
 

Figure 4: The antagonistic effect of T. harzianum Tr1 represented in the middle column and T. 

harzianum Tr2 represented in the right column against three isolates of F. verticilliodies (A), F. 

graminearum (B) and B. oryzae (C) represented in the left column. 

 

3.3.2 Effect of T. harzianum isolates on 

naturally infected rice grains 

The naturally infected rice grains treated 

with Trichoderma Tr1 and Tr2 isolates 
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exhibited 100% inhibition of fungal 

pathogens associated with rice grains 

compared to untreated naturally infected 

grains (Figure 5). 

 

 
 

Figure 5: The antagonistic effect of T. harzianum Tr1represented in the middle 

row and T. harzianum Tr2 represented in the last row against rice fungi compared 

to represent in the first row.  

 

 

4. Discussion 

 

In the present study, ten fungal isolates 

were isolated from four rice seed 

cultivars (Giza 177, Giza 179, Sakha 101 

and Sakha 106) showing grain 

discoloration symptoms. These fungal 

isolates were belonged to Fusarium spp. 

and Bipolaris spp. The pathogens caused 

discoloration of grains has also been 

reported by Javaid et al. (2002), Khan et 

al. (2000) and Ilyas and Javaid (1995). 

The transmission of pathogens through 

seeds caused pre & pest emergence of 

seeds and seedling. In addition to 

inflorescence abnormality at later stage 

(Ou, 1985; Neergaard, 1970). Khalid et 

al. (2001) demonstrated that the 

association of fungal pathogens 

decreased the percentage of seed 

germination and consequently poor crop 

stand. The cultural characteristics of B. 

oryzae, F. graminearum and F. 

verticilliodies isolates from Egypt were 

in agreement with those in a previous 

study (Manamgoda et al., 2011; Misra, 

1994; Ellis, 1980) and thus their 

identification was confirmed. Molecular 

markers as a genetic variation 

assessment of fungal species were 

importance became clear in many 

modern studies (Motlagh & Anvari, 

2010; de Oliveira et al., 2002). The ITS 

region as a marker for phylogenetic 

analyses in eukaryotes. It has been also 

used a DNA barcode to identify fungal 
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species (Keller et al., 2015; Schoch et al., 

2012). ITS is very heterogeneous in both 

of size and nucleotide sequences, so 

become a good tool using in different 

levels of taxa especially in species level 

taxa (Sickel et al., 2015). In the present 

study we used the ITS region as a DNA 

molecular tool for identification and 

variation analysis of rice fungal species. 

The findings from this study that T. 

harzianum antagonizes B. oryzae, F. 

graminearum and F. verticilliodies in 

vitro by a combination of reducing the 

linear growth of B. oryzae, F. 

graminearum and F. verticilliodies 

through the creation of an inhibition zone 

and eventual overgrowth are consistent 

with those of Xu et al. (1999) and Rasmy 

(1991). Seed dressing with T. harzianum 

showed maximum growth inhibition of 

tested fungal pathogens indicating 

significant reduction in the population of 

fungi present on naturally infected 

discolored grains. Antagonistic 

Trichoderma isolates produce structure 

for attachment, infection and kill plant 

pathogenic hosts by cell wall degrading 

enzymes (CWDEs) (Nygren et al., 2018; 

Karlsson et al., 2017; Mukherjee et al., 

2012; Harman, 2006; Harman et al., 

2004). Karlsson et al. (2017) reported 

that Trichoderma has mycoparasitism 

related gene such as ech42 and prb1 are 

unregulated during mycoparasitism. 

These genes have a role in the initial 

activities of CWDEs. With Trichoderma 

atroviride, Reithner et al. (2011) reported 

that a synergistic transcription of various 

genes involved in cell wall degradation 

in interaction with B. cinerea and 

Phytophthora capsici (Reithner et al., 

2011). Our results were in accordance 

with the studies of Abdel-Fattah et al. 

(2007) and Ahmed et al. (2013) in using 

biotic control as a seed treatment before 

saving of rice nurseries will enhance the 

seed germination, avoid fungal infection 

and ultimately crop yield. 
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