http://ppmj.net/index.php/ppmj/issue/feed Journal of Phytopathology and Pest Management 2021-06-07T12:48:05+00:00 Mohamed A. Seleim contact@ppmj.net Open Journal Systems <p><strong>Journal of Phytopathology and Pest Management</strong>&nbsp;(PPMJ) publishes fundamental and applied original research on all areas of Plant Pathology and Plant Protection. These include but are not limited to:</p> <p><strong>&nbsp;</strong>Plant diseases are caused&nbsp;by: bacteria, fungi, oomycetes, phytoplasmas, nematodes, parasitic higher plants, protozoa, viruses, viroids and environmental toxins</p> <ul> <li class="show">Plant stress and abiotic disorders</li> <li class="show">Forest pests and diseases</li> <li class="show">Weed disease control</li> <li class="show">Postharvest disease control</li> <li class="show">Animal pests control</li> <li class="show">Biological control</li> <li class="show">Integrated Pest Management</li> <li class="show">New control strategies</li> <li class="show">Evaluated of pesticides</li> <li class="show">Bacteriology</li> <li class="show">Entomology</li> <li class="show">Nematology</li> <li class="show">Mycology</li> <li class="show">Epidemiology</li> <li class="show">Disease etiology</li> <li class="show">Host-pathogen biochemistry and cell biology</li> <li class="show">Ecology of plant disease</li> <li class="show">Host genetics and resistance</li> <li class="show">Description of new pathogen species</li> <li class="show">Report of new disease or pest</li> </ul> <p>&nbsp;The criteria for judging manuscripts are based on novelty, importance, scientific validity, and interest to the readers.</p> <p>PPMJ is a fully open access journal and applies Creative Commons Attribution as long as the research work (publication) is acknowledged and cited properly.</p> <p>All published articles will be immediately and permanently free for everyone to read, download, copy and distribute.</p> <p>PPMJ reviewers can add their reviews performed for the journal to their Publons or ReviewCredits accounts.</p> http://ppmj.net/index.php/ppmj/article/view/206 Control of root rot disease of sugar beet using certain antioxidants and fungicides 2021-02-15T14:49:47+00:00 Mohamed A. Eliwa mohamedeliwa.5419@azhar.edu.eg Mohamed M. El-Sheikh Aly mohamedeliwa.5419@azhar.edu.eg Shaaban M. Saber mohamedeliwa.5419@azhar.edu.eg <p>This study was carried out to investigate the effect of five chemical inducers <em>i.e. </em>salicylic acid, ascorbic acid, catechol, citric acid and potassium silicate and six fungicides <em>i.e.</em> Actamyl70%, Chlorothalonil 50%, Evito 48%, Shenzy 34%, Pyrus 40% and Fentobein 32.5% in order to control <em>Rhizoctonia solani</em> and <em>Macrophomina phaseolina</em> which infect sugar beet roots. The antioxidants, catechol and salicylic acid achieved the best disease control at all rates of application followed by citric acid and potassium silicate, respectively. Concerning fungicides, Shenzy 34% gave noticeable control in disease reduction followed by Evito 48% and Fentobein 32.5%, respectively. Usage of antioxidants as chemical inducers for enhancing plant resistance and capability of defying diseases is well recommended as fungicide alternatives due to their safe influence on human health. But, fungicides are still the most widespread used compounds in disease management strategies, based on their compliant application, reliable and efficient results than any other safer chemical or natural compound which controls the disease by reducing the losses, not by eradicating the disease in which fungicides can do successfully.</p> 2021-02-15T00:00:00+00:00 ##submission.copyrightStatement## http://ppmj.net/index.php/ppmj/article/view/207 Effect of some biofertilizers and biofungicides applications on control onion root-rot disease 2021-02-17T09:04:17+00:00 Ramadan R. A. Hussein ramadanhussein.5419@azhar.edu.eg Mohamed M. El-Sheikh Aly ramadanhussein.5419@azhar.edu.eg Abd-Elal A. Mohamed ramadanhussein.5419@azhar.edu.eg <p>Five biofertilizers and biofungicides namely, (Cerialien, Biogen, Nitrobein, Phosphoren and Potassiumag) and (Rhizo-N, Bio-Arc, Plant-guard, Biozied and T-34) were used to evaluate their ability to protect onion plants (Giza 6 Mohassan var.) against root rot diseases, which mainly caused by <em>Fusarium oxysporum </em>f.sp<em>. cepae </em>causing Fusarium basal rot,<em> Pyrenochaeta terrestris </em>causing pink root rot and<em> Sclerotium cepivorum&nbsp; </em>causing white rot disease as well as improving growth and yield of onion under greenhouse conditions during 2018/2019 and 2019/2020 growing seasons. Data clearly showed that the tested biofungicides decreased the disease severity of onion bulb root rot as compared with the check treatment. The treated soil with different biofungicides significantly decreased the disease severity of onion&nbsp; root rot diseases compared with the control. T-34 biocontrol at the rate of 2 and 3 g/kg soil was the most effective biofungicide in minimizing disease severity caused with the tested fungi followed by Biozied and Rhizo-N at the same concentrations during 2019/2020growing seasons. Also, Treated transplants with commercial biofertilizers <em>i.e.</em> Cerialien, Biogen, Nitrobein, Phosphoren and Potassiumag at 3 g/Kg soil and planted in infested soil with tested pathogenic fungi caused the highest reduction of the tested pathogenic fungi under greenhouse. As mean treated transplants with Nitrobein gave the greatest reduction of root rot diseases caused by <em>F. oxysporum</em> f. sp. <em>cepae</em>, <em>P. terrestris</em> and <em>S. cepivorum</em>, when used under greenhouse conditions during 2018/2019 and 2019/2020 growing seasons. Moreover, all these treatments significantly increased growth parameters <em>i.e.</em> fresh bulb weight, dry bulb weight and bulb diameter as compared with the check treatment.</p> 2021-02-17T09:02:30+00:00 ##submission.copyrightStatement## http://ppmj.net/index.php/ppmj/article/view/211 Antifungal activity of bioagents and plant extracts against certain fungal diseases of potatoes 2021-03-27T21:51:43+00:00 Ahmed B. Mohamed ahmedmohamed.5419@azhar.edu.eg Mohamed M. El-Sheikh Aly ahmedmohamed.5419@azhar.edu.eg Rafeek M. I. El-Sharkawy ahmedmohamed.5419@azhar.edu.eg <p>Twenty-six fungal isolates were obtained from potato plants and tubers growing in different localities in Egypt. The isolates were identified as 11 <em>Rhizoctonia solani,</em> 8 <em>Sclerotinia sclerotiorum </em>and 7 <em>Fusarium</em> spp. The 26 isolates were screened due to their pathogenic capabilities and the most pathogenic isolate among each of the three obtained genera was selected for this study. <em>In vitro</em> studies included the effect of 7 bacterial isolates, 6 <em>Trichoderma</em> isolates, as well as 6 plant extracts at four rates of application against the three fungal pathogens, <em>Trichoderma</em> <em>harzianum </em>(T5) achieved the highest mycelial growth inhibition, followed by <em>T. asperellum</em> (T34) and <em>T.</em>&nbsp; <em>harzianum </em>(T10) isolates. Additionally, <em>Bacillus subtilis</em> (BS2) recorded the best mycelial growth inhibition against the three tested fungi, followed by <em>B. subtilis</em> (BS1) and <em>B.megatirum</em>(BM2). On the subject of plant extracts, garlic extract gave the greatest reduction of the mycelial growth with all rates of application, followed by henna and ginger extracts. Field experiments were conducted during 2018/2019 and 2019/2020 growing seasons to evaluate bioagent activities as well as plant extracts in reducing disease severity caused by the three fore-mentioned pathogenic fungi. <em>Trichoderma</em> <em>harzianum</em> (T5) exhibited the highest disease reduction <em>in vivo,</em> followed by (T34) and <em>Pseudomonas fluorescens </em>(PF2), as compared with the control. Under greenhouse conditions, garlic extract decreased disease severity of both <em>Fusarium </em>sp and <em>S. sclerotiorum</em>, followed by henna and ginger extracts. On the other hand, henna extract came in the first order in reducing disease severity caused by <em>R.solani</em>, followed by ginger and garlic, as compared with the control. On the whole, <em>Trichoderma</em> <em>harzianum </em>(T5) and <em>T. asperellum</em> (T34) were the best treatments, those reduced diseases severity to the greatest extent if compared with the other treatments and the control.</p> 2021-03-19T00:00:00+00:00 ##submission.copyrightStatement## http://ppmj.net/index.php/ppmj/article/view/212 Biological control of some garlic diseases using antagonistic fungi and bacteria 2021-03-27T21:50:46+00:00 Mohamed A. Abd-Elaziz mohamedhassan.5419@azhar.edu.eg Mohamed M. El-Sheikh Aly mohamedhassan.5419@azhar.edu.eg Abd-Elal A. Mohamed mohamedhassan.5419@azhar.edu.eg <p>Eight <em>Trichoderma </em>isolates which isolated from rhizospher of garlic plant and one isolte <em>T. asperellum </em>was obtained on PDA medium, from the commercial product (Biocontrol T34).&nbsp; Also eleven isolates of rhizobacteria namly; <em>B. subtilis, </em>two isolates (Bs1 and Bs2)<em>, B.megaterium </em>two isolates (Bm1and Bm2),<em> P. fluorescens </em>two isolates (Pf1 and Pf2), four isolates <em>A. chroococcum</em> (Az1, Az2, Az3 and Az4) and <em>Penibacillus polymyxa </em>one isolate&nbsp; were tested in vitro to study thir ability against <em>S.</em> <em>ceprivorum</em> , <em>F. oxysporum</em> f. sp. cepae&nbsp; and <em>P. terrestris </em>which caused white rot, basal rot and pink rot of garlic plants, respectively. The results showed that <em>Trichoderma </em>isolate number (T3) gave the highest reduction on maycelial growth of three pathogenic fungi, which adentified as <em>Trichoderma harzianum,</em> followed <em>T</em>. <em>asperellum</em> (T34), then isolate (T5) and isolate (T7). which adentified as <em>Trichoderma harzianum </em>and <em>Trichoderma hamatum</em>, respectively. <em>Pseudomonas.</em> <em>fluorescens </em>isolate (Pf1), followed by <em>P.</em> <em>fluorescens </em>(Pf2),&nbsp; <em>B. subtilis </em>(Bs2), <em>A. chroococcum</em> (Az4)<em>&nbsp; </em>and <em>B. subtilis</em>&nbsp; (Bs1), then<em>&nbsp; A. chroococcum </em>(Az2), <em>B. megaterium</em> (Bm2) and<em> Penibacillus polymyxa</em>&nbsp; gave highly antagonistic effect was clear against the tested fungi respectively. A pot experiment was crried out under greenhouse conditions to evaluate the efficacy of commercial biofungicides biozeid , Bio-Arc, Plant Guard, T34 biocontrol and Rhizo-N, and biofertilizers Nitrobien, phosphoren, Biogen, Potassiumag, Ascobein and carialin were evaluated individually against garlic white rot, basal rot and pink rot diseases. Data showed that treated soil with biofungicides and biofertilizers reduced white rot, basal rot and pink rot diseases compared with the control. Treated soil with Rhizo-N, T34 biocontrol, Phosphoren and Nitrobien gave the best reduction of disease severity throughout two successive growing seasons.</p> 2021-03-20T00:00:00+00:00 ##submission.copyrightStatement## http://ppmj.net/index.php/ppmj/article/view/214 Evaluation of some safe alternative agents against the pink stem borer, Sesamia cretica Lederer infesting sugarcane at Sohag governorate, Egypt 2021-06-07T12:48:05+00:00 Olwan A. M. Ali redasaba2020@gmail.com Shalby M. El-Awady redasaba2020@gmail.com Mohmmed K. Al-Ansare redasaba2020@gmail.com Reda M. Saba redasaba2020@gmail.com <p>Some different control methods, mechanical, biological and four plant extracts were tested individually against the pink stem borer, <em>Sesamia critica</em> Lederer (Lepidoptera: Noctuidae) in both plant and ratoon crops of sugarcane during 2018 and 2019 at Sohag governorate, Egypt. Data were recorded on the basis of the percent infestation (dead hearts) of <em>S. critica</em> from April to June, while the infestation reduction percentage and population density were recorded based on the percent of infestation. The results showed that, all the control methods significantly reduced borer infestation as compared with control plots. Data demonstrated that water extracts of marjoram and rosemary achieved the lowest infestation (2.18 - 3.02%) and (1.42 – 2.00%), while the highest infestation was recorded in biological control treatment (18.00 – 13.47%) in two seasons 2018 and 2019 respectively. These results could be used in integrated pest management (IPM) programs for the pink stem borer, <em>Sesamia critica</em> control in sugarcane.</p> 2021-04-03T21:52:08+00:00 ##submission.copyrightStatement##