

Analysis of varietal response to bakanae infection *Fusarium fujikuroi* and gibberellic acid through morphological, anatomical and hormonal changes in three rice varieties

R.A.S. Elshafey^{1*}, A.M. Tahoon², F.A. El-Emary³

¹Rice Research and Training Center, Rice Research Department, Field Crops Research Institute, Agricultural Research Center, 33717 Sakha, Kafr El-Sheikh, Egypt

²Rice Pathology Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt

³Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University (Assiut Branch), 71524 Assiut, Egypt

Abstract

Fusarium fujikuroi, the causal organism of bakanae disease, is mainly seed borne pathogen on rice. The response of different rice varieties have more concern to understand pathogenesis process and host pathogen interaction complex. Therefore, the present study had some objectives: to determine response of some rice genotypes to bakanae infection and Gibberellic acid (GA3) treatment through morphological, anatomical and plant hormones changes. The highly virulent isolate no. 10 of F. Fujikuroi was used in evaluation of three rice cultivars; Sakha 101, Giza 179 and promising line GZ 10101-5-1-1-1. Changes in all morphological, anatomical traits and plant hormones activities Gibberellic acid (GA3), Indol Acetic acid (IAA) and Abscisic Acid (ABA) with bakanae infection and GA3 treatment were assessed from 15-60 days after inoculation and GA3 treatment during season 2018. Results indicated that bakanae infection caused severe morphological changes as abnormal elongation, degradation of chlorophyll and seedling death. Morphological changes were associated with wide anatomical changes of leaf as deformation of motor cell, mesophyll layer. For stem, infection and GA3 induced significant increase in the No. of aerenchyma and their diameter and increase pith diameter, and stem elongation. As well as, anatomical changes in roots were significant increase in diameter of epidermis, cortex layers, vascular cylinder, and reduction in diameter of xylem vessels. Out of anatomical results, Fusarium fujikuroi prefer to grow in aerenchyma, pith, cortex, vascular bundle of both sheath and stem. There is a significant increase in plant hormones Gibberellic acid (GA3), Indol Acetic acid (IAA) and Abscisic Acid (ABA) with bakanae infection and GA3 treatment combined with bakanae infection and GA3 treatment. GZ 10101-5-1-1-1 was recorded the lowest response to GA3 treatment with the lowest infection % and stem elongation%. While Sakha 101 and Giza 179 were the highly susceptible cultivars to bakanae with the highest infection %, stem elongation% and response to GA3. The fast and highest stem elongation %, No. of nodes and internode length was considered as remarkable phenotypic markers it can be used as valuable and early selection marker of susceptibility in breeding program to bakanae disease. GZ 10101-5-1-1-1 as new promising line and high tolerant to bakanae and low response to GA3 could be used as a good source in bakanae resistance breeding program.

Keywords: rice, Gibberella fujikuroi, elongation, bakanae, gibberellic acid, IAA, ABA, anatomical traits.

* **Corresponding author:** R.A.S. Elshafey, E-mail: <u>relshafey13@yahoo.com</u>

Introduction

Bakanae caused by the fungal pathogen Fusarium fujikuroi Nirenberg [teleomorph Gibberella fujikuroi (Sawada) Ito & Kimura] (Carter et al., 2008; Leslie & Summerell 2006; Ou, 1985). Bakanae became more distributed on large scale with the increase of dry seeded nursery and direct seeded rice (Yang et al., 2003). Bakanae characteristic symptoms are abnormal elongation of the rice plant and foolish seedling one of the most important emerging seed and soil borne disease. In India, the yield losses ranging from 15-25 and can reached 40 % (Sunder et al., 2014; Pannu et al., 2012; Rood, 2004). incidence of bakanae Highly was demonstrated from Italy (Amatulli et al., 2012) and almost of major Asian rice growing countries such as Bangladesh, Pakistan, India, China, South Korea, Japan and Taiwan (Chen et al., 2016; Gupta et al., 2014; Park et al., 2009; Khan et al., 2000). Fusarium fujikuroi, the causal agent of bakanae disease, was mainly the most abundant Fusarium spp. (Wulff et al., 2010) that isolated from typical symptoms and only F. fujikuroi isolates were able to cause bakanae disease, (El-Kady et al., 2016; Amatulli et al., 2010). The fungus have ability to infect rice plants from pre-emergence to mature stages, and severe infection of rice seeds lead to poor germination (Iqbal et *F*. al., 2011). fujikuroi was hemibiotrophic fungus, their initial infection depend on living host cells as a biotrophic, and progressive infection includes consumption nutrients and host cells destruction (necrotrophic) (Ma et al., 2013). Gibberellins (GAs) are natural group of terpenoid plant hormones as secondary metabolites biomolecules complex in the fungus Gibberella fujikuroi with strong effects in plant physiology process. GAs was identified

in some fungal and bacterial species, in some cases related to virulence (Cerezo et al., 2018; Avalos et al., 1999). Gibberellin producers belong to group C out of six groups A-F, as subspecies fujikuroi the pathogens of rice, with abnormal elongation as the most distinctive symptom of rice seedlings, is due to the additional growth induced by the fungal gibberellins (Klittich & Leslie, 1992; Leslie, 1991). The changes in plant morphology was contributed to the ability of *F. fujikuroi* to secrete gibberellic acids (GAs) as secondary metabolites (Ou, 1985; Bearder 1983). The fungus not depend on GAs in growth and development, as secondary metabolites although they are thought to contribute to the virulence of F. fujikuroi, the only Fusarium species capable of biosynthesis, GAs by controlling jasmonic acidresponsive gene expression and jasmonic acid-mediated plant immune responses (Siciliano et al. 2015; Wiemann et al. 2013). GA production was also associated with fungicide sensitivity of different F. fujikuroi isolates (Tateishi & Suga, 2015). Bioactive gibberellins play an essential role in many aspects of plant growth and development, such as stem elongation, flower and fruit devilment and seed germination (KO et al., 2006; Koga et al, 2004; Gomi & Matsuoka, 2003). The ability of fumonisins and gibberellin GA₃ production in vitro totally varied with Fusarium species. Whereas fumonisins were produced by most of the strains of F. verticillioides and F. proliferatum, gibberellin GA₃ was only produced by F. fujikuroi (Wulff et al., 2010). The only G. fujikuroi strains able to produce GAs and the species was determined as the pathogen of bakanae disease of rice from total 25 strains belong 5 Fusarium species (Nur Ain et al., 2008). Gibberella fujikuroi produce the growth hormone gibberellins, which causes plant elongation (Bhalla et al., 2010; Berrios et al., 2010). Plants produce different types of hormones, such as gibberellin (GA), auxin, abscisic salicylic acid (ABA), acid (SA), ethylene (ET), jasmonic acid (JA), cytokinin (CK), brassinosteroids (BR) and strigolactones that may play a role in plant-pathogen interactions (Bari & Jones, 2009). GA and its signaling components may play important roles in regulating defense responses against various necrotrophic and biotrophic pathogens (Bari & Jones, 2009). Based on gibberellin production, 16 strains of Fusarium moniliforme and one each strain of Fusarium pallidoroseum, F. oxysporium and F. solani observed great variability in gibberellin production from different strains of Fusarium. Gibberellins are responsible for the growth aberrations observed in rice plants infected with G. fujikuroi (bakanae disease) (Yang et al., 2013). Anatomical structure of stem was a good indicator to mechanism of GA₃ application on rice plant. Therefore, the present study had some objectives: to determine response of some rice genotypes to bakanae infection and GA₃ treatment. In addition to compare the impact of F. fujikuroi and GA₃ in damage of rice tissues structure through determine of morphological, anatomical and plant hormones changes.

Materials and methods

Isolation, pathogenicity and monitoring changes associated with *Fusarium fujikuroi* infection and gibberellic acid treatments: *Fusarium fujikuroi* mainly isolated from infected upper nodes of stem just above crown of diseased plants of different rice cultivars. Small pieces of upper infected nodes and internodes 1-3 cm were cut and washed under tap water, sterilized with 3% NaOCl for 2-3 min, rinsed twice in sterile distillate water. One-week later growing mycelia transferred to fresh PDA media in Petri plates and kept at room temperature. All isolated Fusarium isolates were tested in their reaction and virulence on different rice cultivars. For proper identification F. Fujikuroi, only isolates of F. Fujikuroi that mainly pathogenic to rice and able to induce typical symptoms of bakanae disease (Wulff et al., 2010). The isolated fungus was identified according to Leslie and Summerell (2006), Nelson et al. (1983) and Booth (1971). Preliminary trail was conducted to determine the proper concentration of GA₃ whereas five concentrations at 10, 20, 40, 80 and 160 ppm were added to the nutrients solution. In addition 15 rice genotypes were used to select the current tested genotypes and Minghu 63 was replaced by Giza 179 as a local cultivar that has the same response to infection and GA₃ treatment. Then, the highly virulent isolate no. 10 of F. Fujikuroi was used in inoculation of different rice cultivars. Fungal culture in PDA sub-cultured at room temperature. One week later, fungus mass grown in Petri dishes scraped in sterile water with a spatula. The final suspension was filtered through two layers of sterile cotton lint. Grains of Sakha 101 the most susceptible cultivar, Giza 179, Minghu 63 indica japonica and GZ 10101-5-1-1-1 as highly tolerant promising line, were soaked in spore suspension of the tested isolate at concentration 5×10^5 spores / ml for 48h. all inoculated grains were Then. incubated for additional two days. All treatments were arranged as healthy, infected and 80 check ppm concentration of GA₃ with three replicates for each cultivars in complete randomize design. Fifty grains of each cultivar was seeded in hydroponic method in nutrient solution in 10 x 10 cm. diameter plastic pots and grown in greenhouse at 30-35°C. the All morphological changes as, total shoot and root lengths measured, plant height, chlorophyll leaf length, content, combined pathological traits with bakanae infection, such as elongation %, adventitious roots, and bakanae infection were recorded. The elongation % was calculated according this formula:

Elongation (%) with $GA_3 = (GA_3 \text{ treatment} - Control)/Control \times 100.$

Elongation (%) with bakanae infection = (Infected treatment – Control)/Control×100.

Extraction, separation and estimation of growth regulating substances: The all parts of rice samples were collected 42nd day after sowing, immediately dipped in liquid nitrogen with 0.5 gm fresh weigh for each treatment and stored at frozen conditions. The extraction method was analyzed at Food Technology Research Institute, Agricultural Research Centre according Shindy and Smith (1975) to and Hassanein et al. (2009) as following; to estimate the amounts of acidic hormones IAA, ABA and GA₃, the plant hormone standard ones fractions and were methylated according to Vogel (1975) to ready for GC analysis. be Flame ionization detector used was for identification and determination of acidic hormones using Helwett Packered Gas Chromatography (5890).The chromatography was fitted and equipped with HP-130 mx 0.32 mm x 0.25 mm capillary column coated with methyl silicone. The column oven temperature was programmed at 10°C/min from 200°C (5 min) to 260°C and kept finally Injector to 10 min. and detector temperature were 260 and 300°C. respectively. Gases flow rates were 30, 30, 300 cm/sec for N2, H2 and air, respectively and flow rate inside column was adjusted at 2 ml/min. Standards of IAA, GA₃ and ABA were used. Peak identification was performed by comparing the relative retention time of each peak with those of IAA, GA₃ and ABA standards. Peak area was measured triangulation and the by relative properties of the individual components were therefore obtained at various retention times of samples. Elongation percentage and rice plant hormones Gibberellic acid (GAs), Indol-3-acetic acid (I.A.A) and Abscisic acid (A.B.A) were estimated 30 days after sowing and the fungus inoculation. The number of dead seedlings was counted 30 days after sowing and inoculation.

Anatomical studies: To investigate the effect of bakanae disease infection and GA₃ treatment on some anatomical changes in structure of leaf, stem, and roots of rice cultivars;, Sakha 101, Giza 179 and GΖ 10101-5-1-1-1. This investigation was carried out at laboratory and greenhouse of Rice Research Center, Sakha, Kafr El-Sheikh, Egypt laboratory and of Botany department, Faculty of agriculture, Assuit, El- Azhar University, Assiut, Egypt during rice season 2018. The samples were taken from all genotypes after 15 and 60 days after sowing and seed inoculation of all treatments to study anatomical structure of leaf, stem and root by 40 Х

magnifying. Ten samples of the tip portion of second leaf, 0.5 cm after second stem node and 0.5 from the tip of root were collected of each treatment. Each sample measured 0.5 cm. All samples were killed and fixed for 48 hours in FAA (10 ml. formalin, 5 ml glacial acetic acid, 50 ml ethyl alcohol and 35 ml water). The dehydrated samples were infiltrated and embedded in paraffin (52-54°C m.p.). The embedded samples were sectioned on a rotary microtome at a thickness of 5-10 µm. Sections were mounted on slides and deparaffinized. Staining was accomplished with safranine and light green, cleared in xylol and mounted in Canada balsam (Gerlach, 1977). Slides were microscopically examined and measurements and counts. The sections computerized morphometrical were analysis, the morphometrical analysis was done by Research Microscope type Axiostar plus made by Zeiss transmitted light bright field examinations upgrade able to professional digital image analysis system (Carl Zeiss Axiovision Product Suite DVD 30).

Statistical analysis: Statistical analysis using Costat computer conducted statistical software package, Data were statistically analyzed according to the analysis of variance (ANOVA) of the completely randomized design, applied in both laboratory and greenhouse experiments according to Gomez and (1984).Least Significant Gomez Difference (LSD) test at 5% was used to determine genotypic differences among all means of pathological, morphological and anatomical traits under each treatment.

Results and Discussion

pathological Monitoring of and morphological changes associated with bakanae infection: Concerning morphological changes, invasion of Fusarium fujikuroi to rice tissues, fungus induced significant changes in infected rice cultivars compared with healthy one. The earliest symptoms appeared fifteen days after inoculation, as an inoculated rice seedling exhibited abnormal elongation and during this stage, infected seedling produced early nodes and very long internodes as characteristic symptoms to highly sensitive cultivars to bakanae infection and high response degree gibberellic acid (GA_3) to treatment. Infected seedling became taller, slender and highly chlorotic than healthy adjacent seedlings. The hyperelongation of bakanae infected plants due to secretion of F. fujikuroi to Gibberellin and plant hormones. The infected seedlings were thin with vellowish to pale green leaves (Figure 1a). Tillering ability, the infected seedlings completely lose their tillering ability and produce individual plant during whole season. The healthy seedling bear two tillers with the main culm compared with single infected one (Figure 1b). With longitudinal section of infected stem (Figure 1b), the internal surface of upper nodes had dark brown color and covered with fungal mycelium mass than white healthy nodes, therefore, Fusarium fujikuroi's recovery percentage increased from lower nodes to higherlevel nodes, in agreement of Manandhar (1999). In response of main roots infection, from lower to upper nodes production of adventitious roots in progress as the most characteristic symptoms and specific response to *Fusarium fujikuroi* severe infection (Figure 1c, d). The infected leaves became pale yellow and chlorotic with remarkable degradation of chlorophyll as chlorosis appearance. In addition, leaves were severely rolled and converted to thin slender tubes reflected a wide reduction in leaf area. Therefore, all physiological processes will be affected as a result of chlorophyll damage and leaf area reduction (Figure 1c, d). The most evident typical symptoms of Bakanae are slender thin stem, severe yellow chlorotic and abnormal elongated leaves and seedlings that induced as a result of pathogen production of gibberellin (Amatulli et al., 2010; Amoah et al., 1995; Ou, 1987).

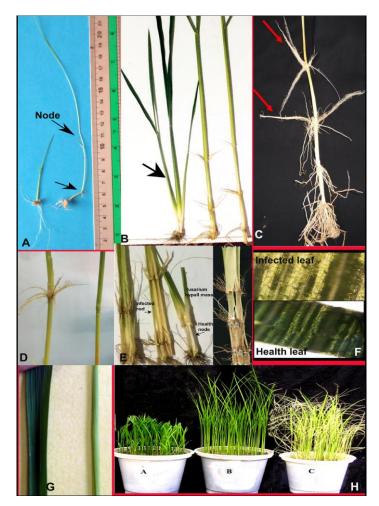


Figure 1: Morphological changes combined with infection of *F. fujikuroi* A: abnormal elongation. B: tillering ability, C and D: adventitious roots, E: Hyphal growth inside node, F: chlorophyll degradation and chlorosis., G: leaf rolling, H: healthy, infected and highly infected seedlings.

We selected rice cultivars with divergent sensitivity to bakanae infection for this study, Data in Table (1) revealed that there are significant difference in response to bakanae infection among rice varieties. Sakha 101 as highly susceptible cultivars that exhibited the highest level of infection percentage 58.33 % followed by Giza 179 which gave 53.33. Whereas, GZ 10101-5-1-1-1 recorded the lowest infection 38.33. Both cultivars Sakha 101 and Giza 179 reflected high level of susceptible response to F. fujikuroi infection, in contrary, GZ 10101-5-1-1-1 recorded high level of tolerance to infection in comparison to Sakha 101. For elongation percentage as a good indicator to response degree to bakanae infection, elongation percentage was in parallel with level of infection and highly associated with bakanae infection and GA_3 treatment. Data in Table (2) and Figure (3) indicated that Giza 179 was superior in their response to infection of bakanae under artificial inoculation that gave 50 % over the healthy check. While, Sakha 101 as a semi dwarf cultivar showed the second rank of highest elongation percentage 46.43. Whereas, GZ 10101-5-1-1-1 as new promising line have the lowest elongation 20 % taller over than the check. The increase of GA₃ was found associated with elongation of internodes and chlorosis of leaves in susceptible plants of MR 211 (Quazi et 2015). For al.. response to GA₃ treatment, GA₃ treatments were surpassed infection of bakanae in their effect of treatment that reflected in

abnormal elongation. Giza 179 was highly responsive to GA₃ with the highest elongation percentage, followed by Sakah 101, while GZ 10101-5-1-1-1 has the lowest response to GA₃ with 27% compared with 60-62 %. This results in agreement with Rangaswamy (2012),and Kwon and Paek (2016) they reported that gibberellic acid is a plant growth regulator which produce different effects comprising stem elongation, enzyme induction, leaf and fruit senescence, growth regulation, seed germination and flowering. The number of nodes and length of internode 21 days after sowing, as a good indictor to susceptibility to bakanae and GA₃, Sakha 101 and Giza 179 recorded both the highest no. of nodes and internode length nodes within 3 weeks . out of our results, those both traits was more associated, fast, more progressive and specific with infection of bakanae and susceptibility of cultivar than GA₃ treatment response. Therefore, Sakha 101 as highly susceptible cultivar with high infection developed more nodes in short time with the highest length. Then, no. of nodes and length of internode were good selection traits for breeding program to bakanae disease as early selection marker an of susceptibility.

Variety	Treatment	Infection (%)	Shoot length1 5DAI (cm)	Root length1 5DAI (cm)	Root Reduction (%)	Stem Elongation (%)	No. of nods	Length of internode 21DAS (cm)	Dead plants 21DAS (%)	Chlorophyll content (SPAD)	Leaf length (cm)	Droopy plants % with abnormal elongation	Time after inoculation to start drop (Day)
Sakha	Healthy	0.00	15.33	13.33		-	0	0.00	0	35.33	6.67	0.00	0.00
	Infected	58.33	28.30	5.67	57.46	46.43	2.33	6.70	56.67	23.00	25.67	11.67	30.00
101	80 ppm GA ₃	0.00	38.33	3.67	72.47	62.50	2	2.33	51.67	21.33	29.67	45.00	25.00
Cine	Healthy	0.00	15.33	10.31		-	0	0.00	0	32.67	7.33	0.00	0.00
Giza 179	Infected	53.33	28.33	7.30	29.19	50.00	1	8.70	53.33	21.33	30.33	91.67	25.00
179	80 ppm GA ₃	0.00	38.33	4.33	81.92	60.53	2	6.50	58.33	21.00	35.33	96.00	15.00
GZ101	Healthy	0.00	23.67	8.35		-	0	0.00	0	34.33	7.33	0.00	0.00
01-5-1-	Infected	38.33	29.33	6.32	24.31	20.00	0	0.00	11.67	27.67	17.67	1.00	60.00
1-1	80 ppm GA ₃	0.00	32.67	3.33	60.12	27.27	1	3.00	8.33	25.33	23.33	11.67	60.00
L.S.D 5	%	2.885	1.842	1.013			0.4561	0.645	4.997	1.099	1.033	3.251	1.033

Table 1: Pathological and morphological changes in rice varieties associated with bakanae infection and GA3 treatment.

DAI = day after inoculation, DAS = day after sowing.

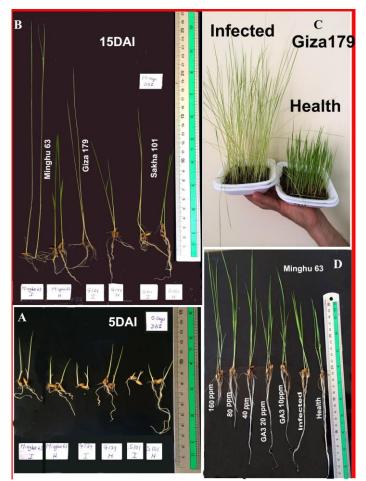


Figure 2: A: Infection with *G. fujikuroi* and their effect on rice plant elongation percentage, shoot and root 5 DAI (day after inoculation), B: 15 DAI, C: healthy and highly infected plants, D: different level of GA_3 .

These results in agreement with Hwang et al. (2013) revealed that F. fujikuroi produced gibberellic acid (GA₃) which is involved in plant growth regulation. GAs accumulate within and around rice roots during host recognition, pre-penetration morphogenesis, and pathogen growth in the plants, and GAs are believed to be responsible for abnormal internode of stem because elongation high concentrations of this hormone cause hypertrophy of the cells in the parts of rice found above ground. In extreme infection, infected plants fall over and die. The response to GA₃ treatment was more evident with Giza 179 from percentage of droopy plants whereas more than 95 % of tested plants were started to droop, collapse and lodged after 15 days from treatment date compared with GZ 10101-5-1-1-1 that gave almost 12 % lodging after 60 days as very late response (Table 1 and Figure 3). These results in harmony with Quazi et al. (2015) reported that with severe symptoms progression of bakanae infection and increase of GA₃, after 21 days of inoculation, susceptible plants of MR 211 were started to collapse and lodged due to over elongation.

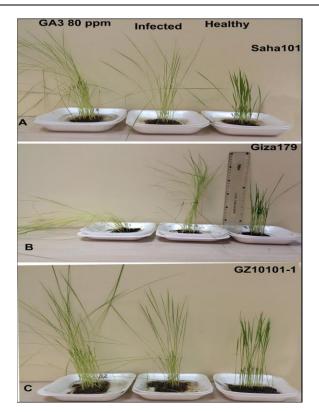


Figure 3: Effect of infection of *G. fujikuroi* and GA_3 treatment 80 ppm on rice plant elongation percentage and droopy plants of rice cultivars Sakha 101, Giza 179 and GZ 10101-5-1-1-1.

The damage and deleterious effect of both bakanae infection and GA₃ was clear in reduction of root length that ranged with bakanae infection from 24.31 to 57.46 and GA₃ treatment caused remarkable reduction ranged from 60.12 to 81.92 % (Table 1, Figure 1a, Figure 2 a, b and d). In addition, the chlorophyll content of GZ 10101-5-1-1-1 more stable for long time and their content not affected more than infected plants, whereas healthy plants have 34.33 SPAD and infected plants 27.67 and GA₃ treatment 25.33 with low significant differences. The low degradation of chlorophyll and chlorosis was a good indicator for tolerance of GZ 10101-5-1-1-1 to bakanae infection. These results are in agreement with Hwang et al.

(2013) who reported that isolate FfB20 of F. fujikuroi triggered rice seedling elongation and foolish growth. In addition. symptoms on rice roots inoculated with FfB14 or FfB20 isolates, drastically inhibited root growth, and the roots and crowns were decayed. In trial on various concentrations and effect of GA₃ on Minghu 63 with 10, 20, 40, 80 and 160 ppm, GA_3 exhibited the same behavior and effect of F. fujikuroi that induced the reduction of root length and induction of abnormal elongation with increase of GA₃ concentration (Figure 3d). GA_3 concentration at 80 ppm recorded the same effect of 160 ppm, so we used 80 ppm in study of anatomical changes. Gibberellins are responsible for the growth aberrations observed in rice plants infected with *G. fujikuroi* (Yang et al., 2013). According to pathological and morphological response to bakanae infection and GA₃, GZ 10101-5-1-1-1 exhibited more desirable traits for bakanae tolerance as late response to

GA₃, low infection of bakanae, more stable chlorophyll content. Finally, we can recommend, according our results, using this line as a high tolerance resource in a successful bakanae disease breeding program.

Table 2: Anatomical changes in l	eaf of rice cultivars associated with	bakanae infection and GA ₃ treatment.

Variety	Treatment	Leaf thickness (µ)	Mesophyll (µ)	Upper epidermis (µ)		Motor cell width (µ)	Bundle sheath (µ)	Bundle Ø (µ)	M.xylem Ø (µ)	Midrib length (µ)	Midrib width (µ)
	Healthy	95.64	70.98	14.25	53.54	81.8	27.22	102.06	31.78	169.00	147.89
Sakha 101	Infected	65.46	31.95	24.64	25.70	42.1	22.74	114.78	22.74	140.54	114.45
	80 ppm GA_3	69.26	36.25	21.59	26.66	41.5	29.70	101.35	19.75	135.65	139.65
	Healthy	102.86	71.24	18.48	52.43	74.2	39.27	176.47	27.19	170.38	160.87
Giza 179	Infected	82.77	52.63	20.61	24.30	50.1	26.35	115.93	16.9	110.56	128.76
	80 ppm GA_3	71.57	45.54	15.17	26.47	37.6	16.40	93.85	14.03	125.78	131.95
	Healthy	119.24	95.00	16.65	51.51	80.6	50.65	118.9	25.64	172.89	170.34
GZ101 01- 5-1-1-1	Infected	105.32	79.93	13.51	48.57	72.7	44.19	120.72	22.12	166.15	164.81
3-1-1-1	80 ppm GA ₃	100.67	81.99	14.15	48.91	67.4	38.59	111.49	17.2	156.79	156.37
L.S.D 5%	-	4.433	5.933	3.642	3.723	11.28	3.587	4.537	3.328	6.264	4.632

Leaf anatomical changes associated with bakanae infection and GA₃ treatment: Concerning the effect of Bakanae disease infection on leaf anatomy, F. fujikuroi infection induced a significant change in the anatomical structure of the third leaf of rice seedlings at 21 DAS (Figure 4 and Table 2). Data revealed that some tissues were decreased, while the others increased in thickness or diameter as a clear response to the fungus infection. The third leaf thickness, mesophyll, bundle sheath thickness and midrib width, in the infected plants were reflected highly significant reduction in opposite to healthy plants. For leaf damage, some anatomical changes reflected morphological damage due to infection such as reduction in leaf area and rolling. Figure 4a and b illustrated that the fungus infection caused а sever reduction in leaf area and rolling compared with full stretched healthy leaves (Figure 4c). Regarding leaf thickness, both susceptible cultivar Sakha 101 and Giza 179 recorded highly significant reduction compared with GΖ 10101-5-1-1-1. tolerant one Whereas, thickness of infected Sakha 101 leaves was 65.46μ compared to healthy 95.64 μ on the other hand GZ 10101-5-1-1-1 was 105.32 µ opposite to 119.24 μ , (Table 2 and Figure 4F, G). Therefore, tolerance of GZ 10101-5-1-1-1 was clear evident from many traits such as, stable leaf thickness. The same trend of reduction was recorded with different tissues: Mesophyll layer, bundle sheath thickness and midrib.

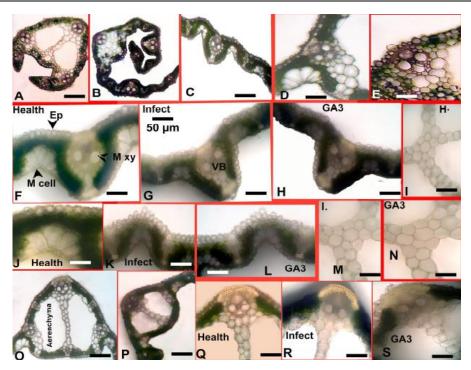


Figure 4: Transverse section of rice leaf and anatomimcal structure due to *G*, *fujikuroi* Infection. A: infected rice leaf 15 DAI. B: Rolling of infected leaf 15 DAI. C: Health leaf. D and E: health and infected Midrib region. F, G and H: health, infected and GA₃ treatment. I, M and N: health, infected and GA₃ paranchyma cell of midrib. J, K and L: health, infected, GA₃ motor cell and epidermal cell. O and P: health and infected midrib. Q, R and S: VB of midrib. Bar=50 μ .

For mesophyll layer thickness, it was sharply decreased by more than two times compared with the healthy leaves, while, infected plants of Sakha 101 gave 31.95 compared to 70.98 μ . On the other hand, GZ 10101-5-1-1-1 exhibited low reduction in Mesophyll layer thickness. The reduction in a Mesophyll thickness was highly associated with sharp reduction in chlorophyll content and chlorosis, so it should significantly affect photosynthesis process and subsequently reduces grain yield of infected plants. Therefore, this explained that GZ 10101-5-1-1-1 still have high chlorophyll content after bakanae infection compared with both Sakha 101 and Giza 179. For GA₃ treatment, GA₃ exhibited the same

trend and impact of reduction on all traits. aforementioned Subsequently, GA_3 have the same behavior of F. fujikuroi infection in anatomical changes of leaf. For motor cells, both dimensions of motor cell was sharply decreased with bakanae infection and GA₃ treatment, more than 50 % in both Sakha 101 and Giza 179, in the opposite direction motor cell of GZ 10101-5-1-1-1 not affected. So, the leaf rolling and deformation as a result of bakanae infection and GA₃ treatment was highly associated with damage of motor cells, subsequently the lamina be rolled (Table 2 and Figure 4B, J, K, L). Out of our results, all leaf anatomical changes with infection and GA₃ treatment was highly associated with and morphological changes, and reflected damage in all leaf tissues. The response of xylem and vessel diameter to infection was clear in reduction with almost 40-50 % of Sakha 101 and Giza 179 with infection and GA₃ treatment. The damage of xylem vessel was sharply and negatively affected water absorption, water content. nutrients and starch translocations. Also, the rest of anatomical traits such as bundle sheath μ , bundle \emptyset , and midrib dimensions μ were decreased in response to infection and GA₃ treatment (Table 2 and Figure 4, F-H, I, M, N, O-S). Only upper epidermis layer exhibited an increase in its cells diameter response to infection and GA₃ opposite behavior to all other anatomical leaf traits (Table 2 and Figure 4, F-H). So, deformation of leaf structure due to bakanae infection and GA₃ treatment, all growth process and nutrients be affected. translocation will The deformation of leaf structure actually will be associated with yield loss. Anatomical structure of flag leaf of susceptible rice cultivars significantly changed in response to bakanae infection and GA₃ treatments. All morphological and anatomical changes in leaf structure of rice were matched with the same changes that caused by white tip nematode infection. These findings are in accordance with Artyukhova and Popova (1981) and Elshafey et al. (2010) who recorded ultrastructural changes caused by A. bessevi to leaves of susceptible rice plants. They reported that nematode and crimping chlorosis, causes considerable changes in the lamina, the structure of the epidermis, and misalignment, underdevelopment and deformation of the motor cells. Also, these results are in harmony with findings of Jairajpuri and Baqri (1991), who reported that the injury due to the infection of A. bessevi caused by the stylet leads to the disintegration of phloem cells. It is clear that white tip nematode disease deforms and damages the anatomical structure of rice flag leaf, which is the important organ for photosynthesis. Aphelenchoides besseyi caused a sharply decrease in the chlorophyll content of the cell, so the photosynthesis rate is severely and negatively affected. According to the deformation of flag leaf due to infection of white tip nematode all agronomic traits will be decreased. White tip nematode infection deformed the motor cells which controlled the rolling and expanding of leaf blade, so the leaf area which exposed to the light of sun sharply diminished as a result of this damage the photosynthesis rate reached to the lower level. Vascular bundle, xylem diameter were negatively affected with white tip nematode infection as a result of this damage the translocation of nutrients from source to the sink will be affected. As a result of all above-mentioned damages, the growth of the plant will be affected, these findings in accordance with results of Tahoon (2016) reported that bakanae infection caused a reduction and loss in chlorophyll content, leaf area, abnormal elongation and produce small panicles with high sterility. The bakanae infection and GA₃ decreased most of leaf anatomical characters. The tolerant and susceptible genotypes revealed wide variation and differentiating parameters in leaf anatomy.

Sheath anatomical changes associated with bakanae infection and GA₃ treatment: Bakanae disease infection induced significant changes in the anatomical structure of sheath of rice cultivars. Figure (5) illustrated that tissues of highly infected cultivar Sakha 101 reached to senescence after 21 days from inoculation, this was clear in Figure with sheath of health (5a) plants compared with infected ones in Figure (5B, C), red arrows in Figure (5C) refers to accumulation of unknown substances in infected cells. In addition, air space or Aerenchyma of infected sheath (Figure 5D) was full occupied with Fusarium hyphal mass compared with health tissues (Figure 5H). Whereas, the health tissues of sheath can reached the

senescence conditions within 60 days after sowing (Figure 5F, G). Therefore, infection of Fusarium fujikuroi induced senescence of infected tissues in short period of time than healthy leaves and blocking of aerenchyma with growth of fungus reduced the amount of available air and respiration process. The growth of fungus inside tissues affected all growth process and consume nutrients. Consequently, the yield was negatively affected with the infection of bakanae The significantly disease. fungus induced abnormal elongation of sheath cells (Figure 5K) compared with health cells Figure (5I, J). These findings are in agreement with Hwang et al. (2013) found that F. fujikouri vigorously infected rice stems.

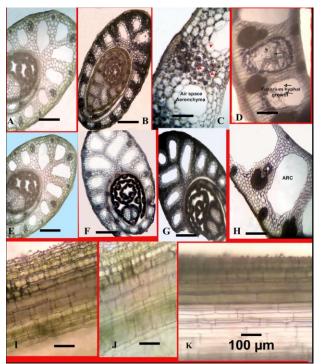


Figure 5: Transverse section of rice sheath and anatomical structure due to *F. fujikuroi* Infection. A: health rice leaf inside sheath 21 DAI. B: infected sheath and senescence 21 DAI, sheath. C: accumulation of unknown substances inside infected cells 21 DAI. D: hyphal growth in Aerenchyma (ARC), H: healthy and free ARC. E: Healthy sheath. F, G: accumulation of unknown substances inside healthy cells 60 DAS. I: longitudinal section of health sheath. J: infected leaf. K: GA₃ treated sheath, bar 100 μ .

Stem anatomical changes associated bakanae infection with and GA₃ treatment: Data presented in Table (3) and Figure 6 showed that, bakanae infection and GA₃ treatment, in the present study increased the most varieties stem anatomical features compared with health plants. The significant increase was evident in the no. of aerenchyma and their diameter. Whereas, the number of aerenchyma increased from 0 in health plants to 14 in highly susceptible of Sakha 101 and 7 aerenchyma with Giza 179. while only one air space (aerenchyma) was formed in infected stem of tolerant variety GZ 10101-5-1-1-In addition, there is significant 1. increment in diameter of this aerenchyma with infection and GA₃ treatment. Aerenchyma (Gas spaces) forms as an adaptation to submergence to facilitate gas exchange. In rice (Oryza sativa), aerenchyma develop by cell death and Lysis, and H_2O_2 promotes aerenchyma formation in a dose-dependent manner (Steffens et al., 2010). Cell death in response to biotic or abiotic stresses is often mediated by plant hormones. In

addition, reactive oxygen species (ROS) superoxide anion radical (O_2) and hydrogen peroxide (H₂O₂) are central regulators of plant cell death (Bouchez et al., 2007; Overmyer et al., 2003; Moeder et al., 2002). The infection of Fusarium and GA₃ treatment may be induced Lysis and cell death of stem cell, free radicals release such as O_2^- and H_2O_2 therefore, increase the aerenchyma formation. This fungus was aerobic and prefers aeration for production of GA₃ and this aeration condition surely necessary because the route of the biosynthesis of GAs involves a series of oxidative steps. Therefore, the microorganism's demand for oxygen may increase with the growth of mycelium. Oxidative steps, which are catalyzed by citocromo P450 monooxygenases, dioxygenases and dehydrogenases, a high aeration condition is critical for an optimal production process (Tudzynski, 2005; Machado et al. 2001; Tudzynski, 1999). Therefore, for more aerobic conditions F. fujikuroi demand wide aerenchyma number and were available in highly susceptible cultivars than resistant.

Variety	Treatment	No. of aerenchyma	Aerenchyma [*] Ø (μ)	Vascular bundle Ø (µ)	No. of Vascular bundle	M. xylem Ø (µ)	Pith Ø (μ)	Ground tissues Ø (µ)	Stem Ø (μ)	$\begin{array}{c} Stem \ cell \\ length^{**} \\ (\mu) \end{array}$	Stem cell elongation (%)
	Healthy	0.00	0.0	139.8	29.33	23.0	110.20	41.40	1649.30	23.72	-
Sakha 101	Infected	14.33	186.0	142.8	29.67	30.0	634.60	66.50	1660.00	44.20	46.33
	GA ₃ 80 ppm	9.33	223.0	233.8	11.00	69.0	271.50	97.10	2008.30	58.96	59.77
	Healthy	0.00	0.0	141.8	29.67	22.0	107.60	38.40	1641.70	17.97	-
Giza 179	Infected	7.33	187.0	161.8	13.67	40.0	428.50	65.40	1216.30	38.56	53.40
	GA ₃ 80 ppm	7.33	197.0	194.4	13.67	66.0	518.80	124.10	1683.80	46.09	61.01
CZ 10101	Healthy	0.00	0.0	145.1	30.00	23.0	109.80	38.70	1655.10	16.36	-
GZ 10101	Infected	1.00	108.0	299.8	12.67	66.0	417.70	89.10	2338.80	30.21	45.85
5-1-1-1	GA ₃ 80 ppm	1.00	158.0	384.7	12.00	116.0	461.50	185.80	2838.70	31.03	47.28
L.S.D 5%		0.807	100.7	28.49	0.950	7.5	22.20	12.58	21.21	6.634	

Table 3: Anatomical changes in stem tissues of rice cultivars associated with bakanae infection and GA₃ treatment.

* diameter of average no. of aerenchyma, ** longitudinal section of stem.



Figure 6: Transverse section of rice stem and anatomical structure due to *F. fujikuroi* infection and GA₃ 80 ppm treatment. A: health stem of Sakha 101. B: infected stem of Sakha 101. C: GA₃ treated stem of Sakha 101. D, E, F: health, infected and GA₃ treatment of Giza 179. G, H, I: health, infected and GA₃ treatment of GZ10101-5-1-1-1, bar 200 μ . VB: Vascular bundle.

The anatomical features that increased with infection and GA₃ treatment were cleared in Vascular bundle Ø, M. xylem Ø, Pith Ø μ , Ground tissues Ø, and Stem cell elongation %. The invasion of Fusarium fujikuroi to vascular bundle and surrounded tissues of GT induced a significant increase in diameter of M. xylem and this may be contributed to feeding of this fungus on cell wall and secretion of different cell lytic enzymes such as cellulose increase weakness and breaking down of cell wall. Therefore, it caused easy expanded and stretched of cell wall of infected cells and consequently increased in diameter (Table 3 and Figure 7). our results illustrated that the *Fusarium* fungus have a wide preference in their growth to occupy pith area and progress in growth through the direction to GT cells and finally vascular bundles (Figure 7B-F). Our results in line with Hwang et al. (2013) who reported that Invasive mycelial growth of isolates FfB14 and FfB20 in the rice stem harvested at 7 dpi. FfB14 vigorously infected rice stems, and active invasive mycelial growth was observed. FfB20 also grew in the rice stem; however, the growth relatively lower. In addition was revealed the active fungal growth of FfB14 in the root and crown of rice seedlings, while the growth rate of FfB20 in rice was more than 4 times lower than FfB14. Massive infective mycelial growth of FfB14 was evident in rice stems and crown; however, FfB20 did not exhibit vigorous growth. The role of GA₃ was more marked and evident in stem cell elongation % and it was clear that this fungus have the ability to induce production of GA₃, therefore infection of Fusarium exhibited almost the same level of elongation of internodes. In addition, the same trend of cell response with infection of *Fusarium* to all stem tissues and effect of GA₃ indicated that GA₃ paly an essential role in infection process and both virulence and susceptibility of cultivars. The tested varieties exhibited a wide variation in their response to both infection and GA₃. The tolerant variety GZ 10101-5-1-1-1 reflected various responses than highly susceptible cultivar Sakha 101, whereas, GZ 10101-5-1-1-1 recorded the highest increment in all stem anatomical features specially Vascular bundle Ø, M. xylem Ø, Ground tissues, low stem elongation % and this increment in side of bakanae tolerance (Table 3 and Figure 6).

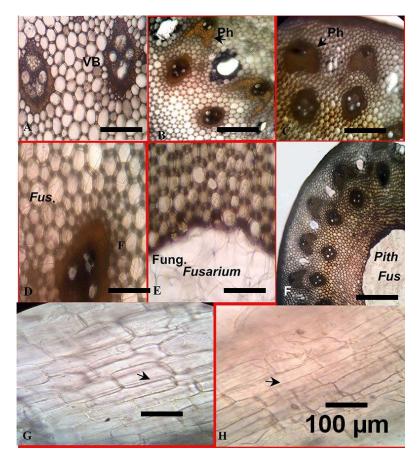


Figure 7: Transverse section of rice stem and anatomical structure due to *G. fujikuroi* infection. A: health stem. B, C, D: invasion and development of infection in vascular bundle. E, F: growth of *Fusarium fujikuroi* in pith and cortex cells. G: longitudinal sections of health stem cell. H: longitudinal sections of infected and abnormal elongated cell, bar 100µ. VB: Vascular bundle, ph: phloem.

GZ 10101-5-1-1-1 was recorded the lowest response to GA_3 treatment, whereas the sensitivity to GA_3 combined with highest stem elongation % as with Giza 179 as 60 % compared with 47.28 % of GZ 10101-5-1-1-1. The high sensitivity to GA_3 associated with high level of bakanae susceptibility. The fast and highest stem elongation % was considered a remarkable phenotypic marker it can be used as valuable selection marker in breeding program to bakanae disease.

Root anatomical changes associated with bakanae infection and GA₃ treatment: Data presented in Table (4) and Figure (8) showed that, bakanae infection and GA3 treatment, in the present study increased the most varieties root anatomical features compared with health plants except M. xylem vessels Ø. The increment in diameter or cell expansion have a fixed direction from epidermal cell to cortex until reached to vascular cylinder. Therefore, the hypertrophy response of for-mentioned root tissues caused a stress and pressure on M. xylem vessels; consequently, the diameter of M. xylem will be reduced and blocked. The reduction in M. xylem diameter will be associated with deficit of water absorption resulted in low water content and wilt.

Variety	Treatment	Epidermal thickness (µ)	Cortex thickness (µ)	Cortex cell diameter $Ø(\mu)$	Vascular cylinder Ø (µ)	M. xylem vessels Ø (μ)
	Healthy	28.84	138.69	18.79	111.27	15.87
Sakha 101	Infected	60.60	159.74	42.29	136.02	7.51
	GA ₃ 80 ppm	58.00	165.03	47.10	164.80	7.14
	Healthy	30.97	134.50	17.53	142.95	11.25
Giza 179	Infected	54.70	150.70	39.44	169.12	7.56
	GA ₃ 80 ppm	53.66	158.73	43.80	178.89	7.01
	Healthy	29.33	137.48	17.15	146.85	11.43
GZ 10101-5-1-1-1	Infected	44.90	145.64	32.18	158.24	8.39
	GA ₃ 80 ppm	51.78	151.91	41.24	168.22	7.24
L.S.D 5%	. 11	4.971	6.031	4.120	4.302	2.295

The infection of *Fusarium fujikuroi* to root tissues caused collapse, breakage of cell wall, degradation and finally cell Lysis and death as clear in Figure (8F). Finally, Sakha 101 and Giza 179 exhibited the highest response in all root anatomical traits compared with GZ 10101-5-1-1-1 and healthy check. Data in Table (5) represented the correlation among infection of bakanae disease, GA₃ treatment, morphological, anatomical, plant hormones traits of rice verities. Data indicated that there a highly significant and positively correlation among infection of bakanae infection and some anatomical features such as elongation percentage, number of aerenchyma, aerenchyma Ø, stem cell length, stem cell elongation, epidermal thickness, cortex thickness (µ), cortex cell diameter \emptyset , stem vascular cylinder \emptyset (μ), stem M. xylem vessels Ø, GA₃. Whereas, highly significant and negatively correlated with chlorophyll

content	, lea	f t	hick	ness	(μ),	m	otor	cell
length	(μ),	mo	otor	cell	wid	th	(μ),	leaf
bundle	shea	ıth	(μ),	bun	dle	Ø,	leaf	М.

xylem Ø, midrib length (μ), number of stem vascular bundle, stem M. xylem vessels Ø (μ), root M. xylem vessels Ø.

Table 5: Cor	relation co	oefficients	among	infection	of	F.	fujikuroi,	GA_3	treatment	and	some	morphological,
anatomical, pla	ant hormone	es traits of	rice veri	ities.								

	Infection	Elongation	Chlorophyll	GA3	IAA	ABA
Infection (%)	1	0.966**	-0.981**	0.743*	0.669*	0.327
Elongation (%)	0.966**	1	-0.970***	0.808**	0.540	0.341
Chlorophyll content	-0.981**	-0.970***	1	-0.745*	-0.637	-0.416
Leaf length (cm)	0.975**	0.975^{**}	-0.983**	0.838**	0.539	0.384
Leaf thickness (µ)	-0.805**	-0.865**	0.788^{*}	-0.659	-0.504	-0.214
Mesophyll (µ)	-0.746*	-0.821**	0.741^{*}	-0.586	-0.524	-0.238
Upper epidermis (µ)	0.383	0.471	-0.437	0.057	0.534	0.350
Motor cell length (µ)	-0.878^{**}	-0.940***	0.894^{**}	-0.731*	-0.598	-0.492
Motor cell width (µ)	-0.918**	-0.965**	0.925**	-0.789*	-0.530	-0.282
bundle sheath (μ)	-0.622	-0.687^{*}	0.602	-0.711*	-0.279	-0.247
bundle Ø	-0.530	-0.536	0.428	-0.521	-0.125	-0.050
M.xylem Ø	-0.842**	-0.809**	0.879^{**}	-0.777*	-0.384	-0.352
midrib length (µ)	-0.829**	-0.893**	0.881^{**}	-0.783*	-0.505	-0.675*
midrib width (µ)	-0.713*	-0.752^{*}	0.704^*	-0.541	-0.589	-0.427
No. of aerenchyma	0.798^{**}	0.829^{**}	-0.780^{*}	0.496	0.686*	0.306
Aerenchyma Ø	0.984^{**}	0.967^{**}	-0.985**	0.697*	0.635	0.346
Vascular bundle	0.310	0.162	-0.292	0.045	0.132	-0.170
No. of Vascular bundle	-0.693*	-0.650	0.710^*	-0.586	-0.286	-0.265
M. xylem Ø	0.509	0.409	-0.505	0.330	0.116	-0.122
Pith Ø	0.853**	0.715^{*}	-0.803**	0.494	0.780*	0.296
Ground tissues (µ)	0.559	0.461	-0.552	0.423	0.117	-0.127
Stem Ø	0.098	-0.052	-0.051	-0.173	-0.009	-0.477
Stem cell length (μ)	0.903**	0.951**	-0.883**	0.692*	0.498	0.172
Stem cell elongation	0.977^{**}	0.925**	-0.964**	0.709*	0.638	0.330
Epidermal thickness (µ)	0.970^{**}	0.929**	-0.966**	0.592	0.735*	0.350
Cortex thickness (µ)	0.938**	0.947^{**}	-0.909**	0.666	0.538	0.125
Cortex cell diameter Ø (µ)	0.973**	0.944**	-0.965**	0.677*	0.602	0.257
Vascular cylinder $Ø(\mu)$	0.671^{*}	0.654	-0.732 [*]	0.686*	0.213	0.272
M.Xylem vessels Ø (µ)	-0.872**	-0.808**	0.900**	-0.565	-0.619	-0.280
GA ₃	0.743^{*}	0.808^{**}	-0.745*	1	0.102	0.195
IAA	0.669^{*}	0.540	-0.637	0.102	1	0.521
ABA	0.327	0.341	-0.416	0.195	0.521	1

Gibberellic acid activity changes with bakanae infection and GA_3 treatment: Data presented in Table (5) indicated that, there was a remarkable increase in GA_3 (ppm) associate with infection of bakanae and GA_3 treatment in comparison with healthy plants. For correlation coefficients, GA_3 was gave highly significant and positively correlation infection (%), infection (%), elongation (%), leaf length (cm), upper epidermis (μ), aerenchyma Ø, stem cell length (μ), stem cell elongation, cortex cell diameter Ø (μ), root vascular cylinder Ø, while was highly significant and negatively correlated with chlorophyll content, motor cell length (μ), motor cell width (μ), bundle sheath (μ), M.xylem Ø, midrib length (μ), midrib length (μ) (Table 5).

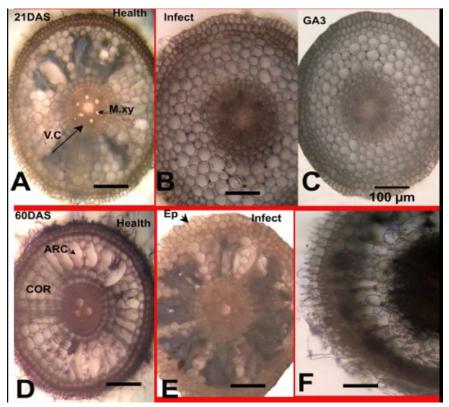


Figure 8: Transverse section of rice root and anatomical structure due to *G. fujikuroi* infection. A: health root of Sakha 101, 21 DAI. B: infected with bakanae. C: treated with 80 ppm GA₃. D: health section 60 DAI. E: infected section. F: highly damaged roots. Bar= 100 μ , Ep, epidermal cells. Co: Cortex. V.C.: vascular cylinder. X.V: xylem vessels. ARC: Aerenchyma. M.xy: Meta xylem.

Indol acetic acid activity changes with bakanae infection and GA₃ treatment: For the changes in activity of indol acetic acid activity (IAA), data presented in Table (5) indicated that, there was increasing in IAA (ppm) under all infection percentage compared with healthy plants in all rice cultivars under the present study. For correlation coefficients, IAA was gave highly significant and positively correlation infection (%), elongation (%), leaf length (cm), upper epidermis (μ), aerenchyma Ø, stem cell length (μ), stem cell elongation, cortex cell diameter Ø (μ), root vascular cylinder Ø, while was highly significant and negatively correlated with chlorophyll content, motor cell length (μ), motor cell width (μ), bundle sheath (μ), M. xylem Ø, midrib length (μ), midrib length (μ) (Table 5).

	Plant hormones in rice plants (ppm)									
Treatment		Sakha 10	1		Giza179		GZ	GZ 10101-5-1-1-1		
	GA	IAA	ABA	GA	IAA	ABA	GA	IAA	ABA	
Healthy plants	350	0.8	0.7	310	2.5	0.5	300	0.7	0.7	
Infected plants	500	20	2.3	850	15	10.5	420	15	1.7	
GA3 (80 ppm)	850	8.2	0.8	1520	5	0.8	510	6.5	0.9	

Table 6: Plant hormones changes through rice cultivars associated with bakanae infection and GA3 treatment.

Abscisic acid activity changes with bakanae infection and GA₃ treatment: Concerning the abscisic acid (ABA) (ppm) data in Table (5) cleared that there was positively impact on ABA (ppm) with increase infection of F. fujikuroi in the present study, were its led to increase it compared with healthy plants in the tree cultivars under the present study. Abscisic acid probably compromises rice defense against pathogens. Jiang et al. (2010)demonstrated that ABA suppresses the basal resistance of rice when it interacts with the pathogen Pyricularia oryzae. For the situation and relationship among different hormones, Elemary et al. (2015) demonstrated that abscisic acid (ABA) was higher in the untreated entries or varieties with GA₃. The highest value of ABA was observed with untreated IR69625A. For Indol acetic acid (IAA) showed highly significant and positive correlation with plant height, amylose content% and GA₃, While, abscisic acid showed significant and negative correlation with plant height, number of panicles per plant, seed set %, grain yield per plant all results in agreement with Kim et al (2014) reported that, ABA able to improve abiotic stress tolerance in rice, fine regulation of its expression will be required to avoid deleterious effects on agricultural traits. In addition, Quazi et al. (2015) found that the increase in GAs including fungi produced GA3 and IAA were higher in inoculated susceptible MR 211 rice plants (GAs = 26%, IAA = 40.39%) as compared to resistant BR3 (GAs = 19%, IAA = 4.27%), 7 days after inoculation. 14 days after inoculation both phytohormones were observed to increase., after 21 days of inoculation with abnormal elongation, and finally dead followed by a decrease in GAs and IAA but an increase in ABA. In resistant variety BR3, marginal up regulation of GAs and IAA were observed only at 21 days after inoculation in stems with no typical symptom of bakanae disease. The increase of infection combined with remarkable increase of GA levels with both cultivars Sakha 101, Giza 179 and GZ 10101-5-1-1-1. In addition, GA3 increase with infection of bakanae disease and treatment of GA3. Infection of bakanae induced increase of IAA and ABA. While, GA₃ application was more associated with increase of IAA than ABA (Table 6). All results in agreement with Tahoon (2016) who reported that correlation coefficient values indicated that there are significantly and positively correlation among infection % and elongation %, GA, IAA and ABA. Also, elongation percentage was positively correlated with concentration of GA and both IAA and ABA. GA content positively correlated with both IAA and ABA in both Sakha 101 and Giza 179 cultivars. Considering the synergistic relationship between GA₃ and IAA, and antagonistic relationship between GA3 and ABA (Chen et al., 2006; Xu et al., 1998), it was postulated that GA 3, IAA and ABA phytohormones might be involved in different bakanae symptoms expression. As endogenous GA 3 levels were found to be correlated with elongation (hypertrophy) in bakanae diseased plants (Kuo & Yang. 1967), therefore, the justification of the current study was that the up-regulation level of GA₃ might also be responsible for the upand down- regulation of IAA and ABA thereby associated with other and symptoms expression. Moreover, in relation to bakanae disease development, IAA and ABA that might have influences on disease susceptibility/ resistance and have not been identified. Conversely, the concentration of abscisic acid remained the resistant cultivar; constant in however, the levels of this phytohormone were highest in the inoculated plants compared to the uninoculated control (Bolwell et al., 2002; Blee et al., 2001). Accumulation of ethylene and GA and a ABA level decreased in the rice internode thus favor induction of epidermal cell death and ensure that Programmed cell death (PCD) is initiated as an early response that precedes adventitious root growth. PCD further gibberellin promoted bv (GA). Gibberellic acid was also shown to promote ethylene-induced cell death, while abscisic acid (ABA) acts as a strong repressor of the epidermal cell death response (Steffens & Sauter, 2005; 2009). In conclusion, symptoms of bakanae disease including plant height inhibiting increase. chlorophyll formation, disruption of root growth and susceptibility to infection are associated with phytohormonal imbalance of GAs,

IAA and ABA (Quiz et al., 2015). All pathological, morphological, anatomical traits and hormonal activities changes due to bakanae infection and GA₃ treatment were highly matched and reflected the same behavior. GZ 10101-5-1-1-1 as a new promising line was highly tolerant variety that can be used a good donor for bakanae resistance in breeding program.

References

- Allam AI, Hollis JP, 1972. Sulphide inhibition of oxidase in rice roots. Phytopathology **62**(3): 634–639.
- Amatulli MT, Spadaro D, Gullino ML, Garibaldi A, 2010. Molecular identification of *Fusarium* spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathology **59**(5): 839–844.
- Amatulli MT, Spadaro D, Gullino ML, Garibaldi A, 2012. Conventional and real- time PCR for the identification of *Fusarium fujikuroi* and *Fusarium proliferatum* from diseased rice tissues and seeds. European Journal of Plant Pathology **134**(2): 401–408
- Artyukhova GA, Popova MB, 1981. Ultrastructural changes in rice leaves caused by Aphelenchoides besseyi. Byulleten vsesoyuznogo Instituta Gel'mintologii im K.I. Skryabina **31**: 10–12.
- Avalos J, Martin RF, Prado MM, Olmedo EC, 1999. Gibberellin biosynthesis in *Gibberella*. Acta Botanica Gallica **146**(1): 55-65.

- Bari R, Jones JDG, 2009. Role of plant hormones in plant defence responses. Plant Molecular Biology **69**: 473–488.
- Bearder JR, 1983. *In vivo* diterpenoid biosynthesis in Gibberella fujikuroi: the pathway after ent-kaurene. In: Crozier A (ed) The biochemistry and physiology of gibberellins. Praeger, New York, USA, 251–387 pp.
- Berrios J, Pyle DL, Aroca G, 2010. Gibberellic acid extraction form a queaus solutions and fermentation broths by singemulsiom liquid membranes. Journal of Membrane Science **348**: 91–98.
- Bhalla K, Singh SB, Agorwal R, 2010. Quantitative determination of gribberellins by high performance liquid chromatography from various gibberellins producing *Fusarium* strains. Environment Assess **167**: 515–520.
- Blee KA, Jupe SC, Richard G, Zimmerlin A, Davies DR, Bolwell GP, 2001. Molecular identification and expression of the peroxidase responsible for the oxidative burst in French bean (*Phaseolus vulgaris* L.) and related members of the gene family. Plant Molecular Biology **47:** 607–620.
- Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, 2002. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. Journal of Experimental Botany 53: 1367–1376.
- Booth C, 1971. The genus *Fusarium*. Commonwealth Mycological Institute, Kew Surrey, England, 1–237 pp.
- Bouchez O, Huard C, Lorrain S, Roby D, Balague' C, 2007. Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis

lesion mimic mutant vad1. Plant Physiology **145**: 465–477.

- Cerezoa SS, Montiel NM, Sáncheza JG, Terrón RP, Contreras RDM, 2018. Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiological Research **208**: 85–98.
- Chen K, An YC, 2006.Transcriptional response to gibberellin and abscisic acid in barley aleurone. Journal of Integrative Plant Biology **48**(5): 591–612.
- Chen YC, Lai MH, Wu CY, Lin TC, Cheng AH, Yang CC, Wu HY, Chu SC, Kuo CC, Wu YF, Lin GC, Tseng MN, Tsai YC, Lin CC, Chen CY, Huang JW, Lin HA, Chung CL, 2016. The genetic structure, virulence, and fungicide sensitivity of *Fusarium fujikuroi* in Taiwan. Phytopathology **106**(6): 624– 635.
- El-Emary FA, Abo-Youssef MI, Talha IA, 2015. Growth, yield and its traits, chemical and anatomical structure as indicator to effect of GA3 application on some rice genotypes (*Oryza sativa* L.). Kafr El-Shaikh University Journal of Agricultural Research **41**(4): 1235–1250.
- El-Kady SM, Tahoon AM, El-Kot GAN, Gabr WE, 2016. Pathological identification and biological control of *Gibberella fujikuroi* the causal organism of rice bakanae disease. Egyptian Journal of plant protection Research **4**(1): 1–18.
- Elshafey RAS, El-Emary FA, Elamawi RM, 2010. Structural changes in rice flag leaf as affected by white tip nematode disease "*Aphelenchoide besseyi*". Minufiya Journal of Agricultural Research **35**(2): 471–484.

- Gerlach D, 1977. Botanshe Microtechnik. Eine einfuhrung Theime Verlag, Stuttgart, BRO, Germany.
- Gomez KA, Gomez AA, 1984. Statistical procedures for agricultural research. 2nd ed., John Wiley and Sons, New Jersey, USA.
- Gomi K, Matsuoka M, 2003. Gibberellin signalling pathway. Current Opinion in Plant Biology **6**: 489–493.
- Hassanein RA, Hassanein AA, El-din AB, Mohamed S, Hashem HA, 2009. Role of Jasmonic Acid and abscisic acid treatments in alleviating the adverse effects of drought stress and regulating trypsin inhibitor production in soybean plant. Australian Journal of Basic and Applied Sciences **3**(2): 904–919.
- Hwang IS, Kang WR, Hwang DJ, Bae SC, Yun SH, Ahn P, 2013. Evaluation of bakanae disease progression caused by *Fusarium fujikuroi* in *Oryza sativa* L. Journal of Microbiology **51**(6): 858–865
- Iqbal M, Javed N, Sahi ST, Cheema NM, 2011. Genetic management of bakanae disease of rice and evaluation of various fungicides against *Fusarium moniliforme in vitro*. Journal of Phytopathology 23: 103–107
- Jairajpuri MS, Baqri QH, 1991. White-tip disease. In: Jairajpuri, M.S. and Q.H. Baqri (eds.), Nematode Pests of Rice. Oxford & IBH Publishing Co. PVT. LTD, New Delhi, India. Pp. 46-50.
- Jiang CJ, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H, 2010. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-*Magnaporthe grisea* interaction. Molecular Plant-Microbe Interactions 23: 791–798.

- Khan JA, Jamil FF, Gill MA, 2000. Screening of rice germplasm against Bakanae and bacterial leaf blight. Journal of Phytopathology **12**: 6–11.
- Klittich CJR, Leslie JF, 1992. Identification of a second mating population within the *Fusarium moniliforme* anamorph of *Gibberella fujikuroi*. Mycologia **84**: 541–547.
- Ko JH, Yang SH, Han KH, 2006. Up regulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant Journal 47: 343–355.
- Koga H, Dohi K, Mori M, 2004. Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of *Magnaporthe grisea*. Physiological and Molecular Plant Pathology **65**: 3–9.
- Kuo TT, Yang SE, 1967. Physiology of "Bakanae" disease I. Effect of gibberellic acid on the metabolic changes in germinating rice seeds. Botanical Bulletin- Academia Sinica Taipei **62**(8): 199e208.
- Leslie JF, Summerell BA, 2006. The *Fusarium* Laboratory. Blackwell Professional Publishing, Ames, Iowa, USA.
- Ma LJ, Geiser DM, Proctor RH, Rooney AP, O'Donnell K, Trail F, Gardiner DM, Manners JM, Kazan K, 2013. Fusarium pathogenomics. Annual Review of Microbiology **67**: 399–416.
- Machado CMM, Soccol CR, de Oliveira BH, Pandey A, 2002. Gibberellic acid production by solid-state fermentation in coffee husk. Applied Biochemistry and Biotechnology **102–103**(1-6): 179–191.

- Manandhar J, 1999. *Fusarium moniliforme* in rice seeds: its infection, isolation and longevity. Journal of Plant Diseases and Protection **106**: 598–607.
- Moeder W, Barry CS, Tauriainen AA, Betz C, Tuomainen J, Utriainen M, Grierson D, Sandermann H, Langebartels C, Kangasjärvi J, 2002. Ethylene synthesis regulated by biphasic induction of 1aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiology **130**: 1918–1926.
- Nelson PE, Toussoum TA, Marasas WF, 1983. *Fusarium* spp. an illustrated manual for identification. The State University Press, Penn, USA, 203 pp.
- NurAin Zainudin IM, Abd Razak A, Salleh B, 2008. Secondary metabolite profiles and mating populations of *Fusarium* species in section liseala associated with bakanae disease of rice. Malaysian Journal of Microbiology **4**(1): 6–13.
- Ou SH, 1985. Bakanae disease and foot rot. In: Ou SH (ed.) Rice diseases. Surrey, Commonwealth Mycological Institute, Kew, Surrey, England, 262–272 pp.
- Overmyer K, Brosché M, Kangasjärvi J, 2003. Reactive oxygen species and hormonal control of cell death. Trends in Plant Sciences 8: 335–342.
- Park WS, Choi HW, Han SS, Shin DB, Shim HK, Jung ES, Lee SW, Lim CK, Lee YH, 2009. Control of bakanae disease of rice by seed soaking into the mixed solution of procholraz and fludioxnil. Research in Plant Disease **15**: 94–100.
- Rood MA, 2004. Bakanae in field yield loss. Rice Journal **15**: 8–10.

- Shindy WW, Smith O, 1975. Identification of plant hormones from cotton ovules. Plant Physiology **55**: 550–554.
- Siciliano I, Amaral Carneiro A, Spadaro D, Garibaldi A, Gullino ML, (2015). Jasmonic acid, abscisic acid and salicylic acid are involved in the phytoalexin responses of rice to *Fusarium fujikuroi*, a high gibberellin producer pathogen. Journal of Agricultural and Food Chemistry **63**: 8134–8142.
- Steffens B, Sauter M, 2005. Epidermal cell death in rice (*Oryza sativa* L.) is regulated by ethylene, gibberellin and abscisic acid. Plant Physiology **139**: 713–721.
- Steffens B, Sauter M, 2009. Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H_2O_2 through an autoamplified signal pathway. Plant Cell **21**: 184–196.
- Steffens B, Geske T, Sauters M, 2010. Aerenchyma formation in the rice stem and its promotion by H_2O_2 . New Phytologist **190**(2): 369–378.
- Tahoon A, 2016. Biological and molecular studies on rice bakanae disease caused by *Gibberella fujikuroi*. PhD thesis, Faculty of Agriculture, Kaferelsheikh University, Kaferelsheikh, Egypt, 1–106 pp.
- Tateishi H, Suga H, 2015. Species composition, gibberellin production and sensitivity to ipconazole of the Fusarium fujikuroi species complex isolates obtained before and after its launch. Journal of Pesticide Science **40**: 124– 129.

- Tudzynski B, 2005. Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Applied Microbiology and Biotechnology **66**: 597–611.
- Tudzynski B, 1999. Biosynthesis of gibberellins in *Gibberella fujikuroi*: biomolecular aspects. Applied Microbiology and Biotechnology **52**: 298–310.
- Vogel AJ, 1975. A text book of practical organic chemistry, 3rd ed., English Language Book Society and Longman Group Ltd., London, England 843-845 pp.
- Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M, Espino JJ, Hu K, Michielse CB, Albermann S, WagnerD, Bergner SV, ConnollyLR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf HU, Güldener U, Tudzynsk B, 2013. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal of complex regulation secondary metabolism and novel metabolites. PLOS Pathogens 9: e1003475.

- Wulff EG, Sørensen JL, Lübeck M, Nielsen KF, Thrane U, Torp J, 2010. Fusarium spp. associated with rice Bakanae: ecology, genetic diversity, pathogenicity and toxigenicity. Environmental Microbiology **12**(3): 649–657
- Xu X, Lammeren AAMv, Vermeer E, Vreugdenhil D, 1998. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro1. Plant Physiology 117: 575– 584.
- Yang DL, Yang Y, He Z, 2013. Roles of plant hormones and their interplay in rice immunity. Molecular Plant **6**(3): 675–685.