

Biological control of damping-off and root rot of fenugreek

M. Z. H. Ali¹, M. M. El-Sheikh Aly², Hoda M. A. Ghaly¹, M. A. Abd-Elaziz^{2*}

¹Agricultural Microbiology Department, Faculty of Agriculture, Minia University, Minia, Egypt

²Agricultural Botany Department, Faculty of Agriculture, Al-Azhar University (Assiut Branch), 71524 Assiut, Egypt

Abstract

Eight Trichoderma and nine bacterial isolates which isolated from rhizospher and nodules of fenugreek plants. Also four isolates of rhizobacteria (PGPR) namely Pseudomonas fluorescens (P.f.) were tested in vitro for thir ability against Fusarium solani, Rhizoctonia solani and Macrophomina phaseolina which caused damping-off and root rot of fenugreek plants. The results showed that Trichoderma isolate number (T3) gave the highest reduction on maycelial growth of three pathogenic fungi followed by isolate number (T2) which adentified as Trichoderma harzianum and Trichoderma hamatum, respectively. Pseudomonas fluorescens followed by Basillus polymyxa, Rhizobium sp. isolate (Rh3), Basillus subtilis and Basillus megaterium gave highly antagonistic effect was clear against the tested fungi as will as used in greenhous experiment. A pot experiment was carried out under greenhouse conditions. Results showed that Treated seed of fenugreek caltivar (Giza 2 cv.) with Rhizobacteria and or treated soil with T. harzianum and T. hamatum reduced pre and post damping-off and root rot diseases of fenugreek and increased survival plant compared with the control. Trichoderma harzianum followed by Rhizobium sp. isolate (Rh3) gave the best reduction in these respects.

Keywords: biological control, fenugreek, rhizobacteria, root rot, Trichoderma.

* **Corresponding author:** M.A. Abd-Elaziz, E-mail: <u>mohemdaziz@yahoo.com</u>

Introduction

Fenugreek (Trigonella foenum graecum) is an annual herb that belongs to the family Leguminosae widely grown in Egypt and Middle Eastern countries. It is commonly found growing in the Mediterranean region of the world (Bukhari et al., 2008). Fenugreek seed contains 20% protein, 50% carbohydrate, 5% fat and 25% dietary fibers lipids, cellulose starch, ash, calcium, iron and βcarotene (USDA, 2001). Also, it has been found to contain vitamin C, niacin, potassium, and diosgenin (which are a compound that has properties similar to estrogen). Other active constituents in fenugreek are alkaloids, lysine and Ltryptophan, as well as steroidal saponins. Therefore, it is used in artificial flavoring and in the production of hormones (Acharya et al., 2007a and b). Green fenugreek is a good source of iron (Fe) as well as other minerals for human beings (Chhibba et al., 2000). Fenugreek is a medicinally important plant possessing anti-diabetic, anti-cancerous, antimicrobial hypocholesterolaemic and properties (Naganand et al., 2010). Fenugreek subjected to attack by number diseases. Among these diseases of damping-off and root rot are the most important diseases of fenugreek which affects both germinating seeds, young seedlings and can reduce crop yield and caused by Rhizoctonia solani Kuhan, solani Fusarium Mart and Macrophomina phaseolina (Madkour & Aly) (Mohamed et al., 2013; Yadav & Anamika, 2005; Haque & Ghaffar, 1992). The alternative of synthetic chemicals is the use of certain biocontrol agents, these are inexpensive and ecofriendly and have no harmful effect on human. In general, the idea of controlling soil borne plant pathogens with chemical fungicides has been shifted to biological control that may play an important role in agriculture. Plant growth promoting rhizobacteria (PGPR) facilitate the plant growth directly by either assisting in resource acquisition (nitrogen, phosphorus and essential minerals) or modulating plant hormone levels. indirectly or bv decreasing the inhibitory effects of various pathogens on plant growth and development in the forms of biocontrol agents (Munees & Mulugeta, 2014). Researchers have reported that treated fenugreek seed or treated soil with Trichoderma spp., rhizobia and compost reduce damping-off and root rot of fenugreek plants (Mohamed et al., 2013: Haque & Ghaffar, 1992). This study was carried out in order to: evaluate the efficacy of rhizobacteria (PGPR) and Trichoderma spp. as biocontrol agents against Rhizoctonia solani, Fusarium solani and Macrophomina phaseolina, the causal fungi of damping-off and root rot diseases of fenugreek plants

Materials and methods

Isolation and identification of the causal pathogens: Samples of fenugreek plants showing root rot and damping-off symptoms were collected from different farms located in Assiut, Sohag and Qena governorates, Egypt. The infected roots were thoroughly washed with running tap water, cut into small fragments, superficially sterilized with sodium hypochlorite (0.5%) for 2 minutes, washed several times with sterile distilled water and dried between sterilized filter papers. The sterilized pieces were transferred into potato dextrose (PDA) medium agar supplemented with penicillin (20 Iu ml-1) and incubated at 25 ± 1 ⁰C, then examined daily for fungal growth. The fungal colonies were purified using 60

single spore or hyphal tip techniques suggested by Booth (1985) and Dhingra and Sinclair (1985). Then, they identified according to their morphological and microscopical characters as described by Booth (1985) and Barnett and Hunter (1972). The obtained isolates were maintained on PDA slants and kept in refrigerator at 5°C for further studies. The identification of isolates was by Mycological Research confirmed Center (AUMC), Assiut University, Egypt.

Pathogenicity tests: Pathogenicity test of the isolated fungi were carried out according to Mohamed et al. (2013), under greenhouse conditions at the Faculty of Agriculture, Al-Azhar University Assiut, Egypt. The plastic pots (20 cm diameter) were sterilized by immersing in 5% formalin solution for 15 minutes, then left for several days to get rid of the poisonous effect of the formalin. Six isolates of R. solani, three isolates of *M. phaseolina* and twenty two isolates of Fusarium spp. were obtained from different locations. The fungi used throughout this experiment as well as the source of isolates are shown in Table (1). The inoculum which used in the foregoing studies consisted of uniform agar discs 5 mm. in diameter bearing 7days old and grown in 500 ml. glass bottles containing the following substrate per bottle (25g. coarse sand, 75g. barley and 100ml tap water to cover the mixture in bottles). The bottles were autoclaved at 20 lp/Sq. for 30 minutes. The bottles were incubated at 25°C for two weeks to obtain sufficient growth of the fungi. The sterilized pots were filled with Sterilized clay loam soil and inoculated with the fungal inoculums at the rat 2 g /Kg. soil,

then watered and lift for one week before sowing to ensure even distribution and growth of each particular fungus.

Table 1: Source of fungal isolates used in this study obtained during 2013 growing season.

Fungus	Isolate code	Source
8	R1	Sohag
	R2	Assiut
	R3	Assiut
	R4	Qena
R. solani	R5	Assiut
	R6	Oena
	M1	Assiut
M. phaseolina	M2	Sohag
nii phaseonne	M3	Sohag
	F1	Qena
	F2	Qena
	F3	Qena
F. solani	F4	Qena
	F5	Assiut
	F6	Assiut
-	F7	Sohag
F. oxysporum	F8	Sohag
	F9	Sohag
	F10	Assiut
	F11	Qena
	F12	Assiut
F. moniliforme	F13	Assiut
	F14	Sohag
	F15	Sohag
	F16	Sohag
E	F17	Qena
F. equiseti	F18	Qena
	F19	Assiut
	F20	Sohag
F. semitectum	F21	Assiut
	F22	Assiut

Disinfested fenugreek seeds cultivar Giza2 were sown in the infested pots at the rate of 10 seeds/pot (20 cm in diameter). Four pots were used for each isolate, (which were considered as replicates). Pots containing sterile soil mixed with barley grains free of any sown similarly fungus were with disinfested fenugreek seeds at the same rate to be used as control treatment. Pots observation were kept under and irrigated Results as needed. were recorded after 15 and 30 days of planting

for damping-off and after 45 days for root rot. The percentage of pre and post emergence damped-off as well as healthy survival plants in each treatment were determined 15 and 30 days after sowing, respectively using the formula according to El-Helaly et al., (1970) and El-Sayed-Sahar and Mousa-Abeer (2015).

Pre-emergence (%)=	Number of Non germinated seeds x100 Total number of sown seeds
Post-emergence (%)=	Number of dead seedling Total number of sown seeds × 100
Survival plant (%)	Number of survival plant × 100 Total number of sown seeds

The infected plants of each replicate were removed from the soil after the inoculation period, washed thoroughly to remove soil debris, then disease severity percentage (DS %) was estimated as the following:

 $DS(\%) = \Sigma [(1A+2B+3C+4D)/4T] \times 100$

where, A, B, C and D are the number of plants corresponding to the numerical grade, 1, 2,3 and 4 respectively and 4T is the total number of plants (T) multiplied by the maximum discoloration grade 4, where T=A+B+C+D. To detect the different degrees of disease, plants were classified into four categories according to (Abo-Elyousr et al., 2014; Dorrance et al., 2003) with slight modifications. The root rot rating scale was as follows: 0 =no root rot; 1=1 to 25% of roots with visible lesions or root rot; 2=approximately 26 to 50% of the roots rote or damaged; 3=51 to 75% of the root rot; and 4=76 to 100% root rot or completely damaged (Fig.1).

Figure 1: An arbitrary (0- 4) disease scale used to measure disease severity % on fenugreek cv. Giza 2, according to Dorrance et al. (2003).

Isolation of Trichoderma spp.: Soil samples were collected from rhizosphere of healthy fenugreek plants, growing fields in Assiut Governorate. One hundred gram from rhizosphere soil were collected into each sterile plastic bag and kept in the refrigerator at the Plant Laboratory, Pathology Faculty of Agriculture, Al-Azhar University, Assiut, Egypt for further analysis. Isolation of antagonistic Trichoderma spp. from rhizosphere soil was made using serial dilution technique (Belete & Ahmed 2015; Waksman, 1922). Each soil sample was thoroughly mixed and pulverized by means of mortar and pestle, and passed through a 0.5 mm soil screen sieve before 1 g was suspended in ml sterile distilled water. 9 The suspensions were made homogeneous by agitation using a vortex mixer and further serial dilutions of 10^{-2} , 10^{-3} and 10^{-4} . One milliliter of serially diluted suspension from each dilution was pipetted into potato dextrose agar (PDA) medium. The Petri plates were thoroughly shacked by gently swirling in clockwise and anti-clockwise direction to

uniformly spread the suspension. Isolates of Trichoderma colonies were picked for antagonism studies after incubating the plates at $25 \pm 1^{\circ}C$ for 48 h. and restreaked on a new plate of PDA medium to obtain pure colonies. Eight Trichoderma isolates were identified according to Kubicek and Harman (2002) based on their conidial morphology, color and texture. growth and characteristics.

Isolation of rhizobium from root nodules of fenugreek plants: Root nodules were collected from young and healthy seedling of fenugreek plants (Trigonella foenum-graecum) from field at different locations in Assiut governorate, Egypt. Fenugreek plants were uprooted carefully so as to get intact are obtained. These plants were brought in laboratory without any delay. Healthy and pink nodules were detached from the root, washed in tap water to remove the adhering soil particles from nodule surface. Nodules were dipped in 0.1% mercuric chloride (HgCl₂) solution for 30 seconds and later washed successively three times with sterilized distilled water to remove the traces of toxic HgCl2. Surface sterilized nodules were transferred in test tube containing 5 ml sterilized distilled water. These nodules were crushed with the help of sterilized glass rod to obtain a milky suspension of bacteriods, and then streaked on yeast mannitol extract agar (YEMA) containing Congo red 0.0025% (w/v). The plates were incubated at 28±1°C for 24-48 h. *Rhizobium* colonies were remained white, translucent, elevated and mucilaginous, after 24-72 h, where a contaminations turned red as described by Vincent (1970), Vishal and Abhishek

(2014) and Jain et al. (2012). The colonies were picked up and transferred to YEMA slant for further characterization.

Evaluation of antagonistic activity of Trichoderma spp. against the pathogenic fungi: Eight different species of Trichoderma were screened against the pathogenic fungi in vitro. The antagonistic effects of each Trichoderma spp. against F. solani, M. phaseolina and R. solani were tested using dual culture technique (Coskuntuna & Ozer, 2008; Abdel-Kader et al., 2002). The tested isolates of *Trichoderma* spp. were grown on PDA medium at 25°C, for 6 days and used as inocula. Discs from each isolate of Trichoderma spp. (5 mm in diameter) were inoculated on PDA medium in one side of Petri plate and the opposite side was inoculated by pathogenic fungi. Four replicates were used for each treatment. Inoculated plates with pathogenic fungi only were used as the control. After five days incubation period at 25°C, the linear growth of the tested pathogen was recorded when the growth of the pathogen covered the plate surface in the control treatment. The percentages of mycelial growth inhibition were calculated according to following formula:

Mycelial growth inhibition (%) = $[A-B/A] \times 100$

Where: A = the length of the hyphal growth in the control, B = the length of hyphal growth of the tested fungus.

The antagonistic *Trichoderma* isolates which gave a higher percentage of mycelia growth inhibition were identified *Trichoderma harzianum* and *T*. *hamatum* by Assiut University Mycological Research Center, Egypt. Therefore, these antagonistic fungi were used in greenhouse experiment.

Evaluation of antagonistic activity of rhizobacteria against pathogenic fungi: Four isolates of rhizobacteria namely B. subtilis, B. megaterium, B. polymyxa and P. fluorescens were obtained from MERCIN, Faculty of Agriculture, Ain Shams University, Egypt. Nine isolates of Rhizobium were isolated form root nodules of fenugreek plants. They were tested against the pathogenic fungi F. solani, R. solani, and M. phaseolina under in vitro conditions. The tested isolates of bacteria were grown on Nutrient Sucrose Agar medium (NSA) (Peptone 5 g, beef extract 3 g, sucrose 5 g, agar 20 g, and distilled water 1liter) and incubated at 28°C for one day, and used as inocula (Sallam-Nashwa et al., 2013). Petri plates (9 cm in diameter) containing potato dextrose agar (PDA) medium were inoculated in the middle by discs (5 mm in diameter) of pathogenic fungi, then inoculated with the tested bacterium on two opposite side of the tested pathogen. Four replicates were used for each treatment. Inoculated plates with pathogenic fungi only, were served as the control. After five days incubation period at 25°C, the linear growth of the tested pathogens was recorded when the growth of the pathogens covered the plate surface in the control treatment. The percentages of mycelial growth inhibition calculated according were to the following formula:

Mycelial growth inhibition (%) = $[A-B/A] \ge 100$

Where: A = the length of the hyphal

growth in the control, B = the length of hyphal growth in the tested isolate.

The highly antagonistic isolates of rhizobacteria; *P. fluorescens*, *B. polymyxa*, *B. subtilis*, *B. megaterium* and *Rhizobium* sp. isolate number (Rh3) were selected and used in greenhouse experiment.

Effect of certain bioagents on incidence of fenugreek root rot and damping-off diseases caused by the tested pathogens under greenhouse conditions: Inocula of T. harzianum and T. hamatum were prepared on sterilized barley medium in 500 ml glass bottles.Each bottles contained (75 g barley grains, 25 g sand and 75 ml tap water). Each bottle was inoculated with discs (0.5 cm in diameter) of 4 days-old cultures of a desired antagonist. Bottles were incubated at 25 ± 1 ⁰C for 15 days. The content of bottles was thoroughly mixed in plastic container and used as a source of inoculum. Inoculum of each antagonist was added to infested pots at the rate of 3% w/w at the time of planting (Ahmed-Hoda et al., 2000). The antagonistic bacteria, i.e. P. flourescens, B. megaterium, B. polymyxa, B. subtilis and Rhizobium sp. were grown in nutrient broth medium (NB) (Abd-Alla et al., 2007). All the tested bacteria were incubated on a rotary shaker at 200 rpm for 48 h at $28 \pm 2^{\circ}$ C. The bacterial cells were harvested by centrifugation at 6,000 rpm for 10 min, washed twice in 0.05 M. phosphate buffer pH 7.0, and resuspended in sterilized distilled water. The concentration of bacterial cells in the suspensions was adjusted to $3X10^6$ cells per milliliter (cfu/ml) (Abdel-Kader et al., 2012) according to its turbidity using

spectrophotometer at 400nm. Fenugreek seeds were sterilized in 0.5% sodium hypochlorite for 2 min then thoroughly washed in sterilized distilled water and left to air dry under aseptic conditions. Fenugreek seeds were thoroughly immersed in bacterial suspension for 5 minutes. Sucrose was added to the mixture to enable the bacteria stick to the seed surface and also to offer initial nutrients for the bacteria, then left to dry for 2 hrs. in a laminar flow before planting. The effects of biocontrol agents harzianum, T. Τ. hamatum, *B*. megaterium, B. polymyxa, B. subtilis, Rhizobium sp.(Rh3) and P. flourescens were evaluated individually against fenugreek damping-off and root rot diseases incited by R. solani, F. solani and *M. phaseolina* under greenhouse conditions. This experiment was carried out during 2015 and 2016 growing in the greenhouse seasons, of Agricultural Botany Department, Faculty of Agriculture, Al-Azhar University, Assiut, Egypt. Plastic pots were filled with sterilized soil and mixing with fungal inocula as described before at rate 2-3 % of clay soil (w w), one week before planting. The antagonistic fungi were added to the infested soil at rate 3% of soil $(w \mid w)$ in pots, at the time of planting. Each pot was sown with 10 treated seeds of fenugreek Giza 2 cv., four pots were used for each treatment as replicates. The infested pots individually with pathogenic fungi only were sown with disinfested fenugreek seeds and served as control. The treatments can be summarized as follows:

- 1-Soil infested with M. phaseolina+T.hamatum T3
- Soil infested with M. phaseolina+T.hamatum T2 2-
- Soil infested with F. solani + T.harzianum T3 3-
- 4- Soil infested with F. solani + T.hamatum T2

- Soil infested with *R. solani* + *T.hamatum* T2 5-
- Soil infested with *R. solani* + *T.harzianum* T3 6-
- 7-Seed treated with B. subtilis
- 8-Seed treated with *B.megaterium*
- Seed treated with *B. polymyxa* 9-
- 10- Seed treated with P. flourescens
- 11- Seed treated with Rhizobium
- 12- Control (untreated)

Results were recorded after 15 and 30 days of planting for the percentage of pre and post emergence damped-off as well as healthy survival plants in each treatment, respectively. At the end of the experiment plants were uprooted washed, rated for Disease severity (DS %) was estimated as described before.

Statistical analysis: Data were subjected to statistical analysis using analysis of variance and means were compared using the LSD test according to Gomez and Gomez (1984).

Results and Discussion

Isolation and identification of fenugreek root rot and damping-off causal fungi: Thirty one fungal isolates were isolated from infected roots of fenugreek plants collected from different localities in Assiut, Sohag, and Qena governorates, Egypt. Fungal isolates identified by using were the morphological features of mycelia and spores as described by Barnet and Hunter (1977) and Booth (1985) and confirmed **Mycological** Research Center by (AUMC), Assiut University, Egypt. Table (1) shows that the isolated fungi were identified as four isolates both of Fusarium oxysporum Schlecht and F. equesti Corda, five isolates of F. solani Mart, six isolates both of *F. moniliforme* Saccardo and *R. solani*, three isolates both of *F.semitectum* Berk & Ravenel and *M. phaseolina* Madkour & Aly.

Pathogenicity tests: Thirty one fungal were isolates tested for their pathogenicity on fenugreek plants (Giza 2 cv.) under greenhouse conditions during 2014 growing season. Data in Table (2) illustrate that all tested fungal isolates were able to infect fenugreek plants caused root rot and damping-off diseases. All the tested isolates significantly caused root rot disease compared with control. F. solani (F5) gave the highest percentage of disease severity followed by R. solani (R2) then, M. phaseolina (M1) and R. solani (R6). Isolates of F. equesti (F17), М. phaseolina (M2 and M3), F. moniliforme (F12 and F14), R.solani (R1, R3, R4 and R5) and F. oxysporum (F6) showed moderate effect of disease severity followed by isolates of F. oxysporum (F8), and F. solani (F2). The other tested isolates significantly showed the lower effect of disease severity. As the regard isolates of F. equiseti (F16) and F. solani (F4) gave the lowest disease severity followed by F. oxysporum (F9) and F.moniliforme (F10). Data also exhibited that, all the tested isolates significantly caused damping-off disease except R. solani (R3) and F. equiseti (F16). R. solani (R2) gave the highest percentage of damping-off disease followed by F. solani (F5) then R. solani (R6), F. semitectum (F20) and R. solani (R1). Isolates of M. phaseolina (M1) and F. semitectum (F21) showed moderate effect of damping-off disease. The low effect of disease incidence was observed in other tested isolates. However, the lowest damping-off disease was found with isolate of *F. oxysporum* (F9) followed by *F. oxysporum* (F8) and *F.moniliforme* (F13 and F15) .Such results are in agreement with those obtained by Haque and Ghaffar (1992) ,Yadav and Anamika (2005), Khokhar et al. (2012) and Mohamed et al. (2013). They were reported that *R. solani*, *F. solani*, *M. phaseolina* and *Fusarium* spp. caused damping-off and root rot diseases of fenugreek under greenhouse and field conditions.

Preliminary tests for antagonistic capability of fungi and bacteria against growth of pathogenic fungi in vitro: Data in Table (3) and Figure (2) show that the antagonistic fungal isolates (Trichoderma spp.) were able to inhibit mycelial growth of the tested pathogenic fungi i.e. M. phaseolina (M1), R. solani (R2) and F. solani (F5) compared with the control. Trichoderma (T3) gave the greatest reduction of mycelial growth of the pathogens followed by isolate (T2), then isolate (T1). But, the other tested antagonistic showed moderate inhibition against the tested pathogenic fungi. The least reduction of mycelial growth of the tested pathogenic fungi was found in case of Trichoderma (No. T4) followed by T8. The highly antagonistic fungal isolates T3 and T2 were selected and identified as Trichoderma harzianum Rifai and T. hamatum Bon respectively Assiut University Mycological by Research Center and were used in greenhouse experiments. These results are in agreement with those recorded by Mishar (2013), Abo-Elyousr et al. (2014) and Belete et al. (2015). In this respect, potential antagonistic of different Trichoderma species arrange of mechanisms have to be considered. One:

production of antibiotic, volatile and non-These substances volatile chemicals. influence the permeability of cell membranes and result in an efflux of the cytoplasm (Howell, 1998). Two: mycoparasitism and excretion of lytic enzymes. The antifungal enzyme system of Trichoderma spp. plays an important role for detection and destroying the pathogenic cell wall (Schirmbock et al., 1994). Three: competitiveness is based on rapid growth and the production of various asexual generated conidia and chlamydospores (Chet et al., 1998; Chet, 1990). The direct influence of *Trichoderma* spp. against pathogens through colining their hyphae around the hyphae of the pathogens to prevent their continued growth (Adekunle et al., 2006).

Table 2: Percentage of fenugreek damping-off and root rot disease severity (%) of 31 fungal isolates under greenhouse conditions during 2014 growing season.

	Damping –off					
The tested fungi	damping-off after 15 dam		Post-emergency damping-off after 30 days (%)	Survival (%)	(%)	
F. solani	F1	10	0	90	33.6	
F. solani	F2	13.3	3.3	83.4	36.0	
F. solani	F3	16.6	3.3	80.1	27.3	
F. solani	F4	6.6	6.6	86.8	16	
F. solani	F5	60	6.6	33.4	89.1	
F. oxysporum	F6	10	0	90	63	
F. oxysporum	F7	16.6	0	83.4	29.3	
F. oxysporum	F8	6.6	0	93.4	37.8	
F. oxysporum	F9	3.3	0	96.7	23.1	
F. moniliforme	F10	10	3.3	86.7	26.5	
F. moniliforme	F11	13.3	0	86.7	30.6	
F. moniliforme	F12	10	0	90	45.0	
F. moniliforme	F13	6.6	0	93.4	33.9	
F. moniliforme	F14	16.6	0	83.4	45.6	
F. moniliforme	F15	6.6	0	93.4	30.1	
F. equiseti	F16	0	0	100	13.6	
F. equiseti	F17	16.6	0	83.4	41.1	
F. equiseti	F18	13.3	0	86.7	27.2	
F. equiseti	F19	16.6	3.3	80.1	34.1	
F. semitectum	F20	40	3.3	56.7	35.2	
F. semitectum	F21	26.6	0	83.4	34.5	
F. semitectum	F22	6.6	10	83.4	33.8	
R. solani	R1	40	0	60	52.8	
R. solani	R2	76.6	0	23.4	79.1	
R. solani	R3	0	0	100	50.2	
R. solani	R4	13.3	10	76.7	42.6	
R. solani	R5	16.6	0	83.4	49.3	
R. solani	R6	43.3	10	46.7	42.7	
M. phaseolina	M1	30	6.6	63.4	78.6	
M. phaseolina	M2	6.6	3.3	90.1	51.6	
M. phaseolina	M3	13.3	6.6	80.1	66.4	
Control		0	0	100	0	
L.S.D. at 5%		4.56	1.32		1.20	

Data in Table (4) and Figure (3) also exhibited that all the tested antagonistic rhizobacteria (PGPR)I inhibited growth of the tested pathogenic fungi. The highest reduction of the tested pathogenic linear mycelial growth was

displayed by P. fluorescens followed by B. polymyxa, Rhizobium sp. (Rh3) and B. subtilis respectively, then B. megaterium. The other tested antagonistic rhizobacteria showed moderate reduction of linear mycelia growth of the tested pathogenic fungi. The lowest inhibition growth of the pathogenic fungi observed with Rhizobium sp. isolate (Rh8). The strongest antagonistic rhizobacteria P. fluorescens, B. polymyxa, Rhizobium sp. isolate (Rh3), B. subtilis and В. megaterium which were selected and used in greenhouse experiments. These results are in line with those recorded by Rakib et al. (2012), Manoj et al. (2014) Haggag-Karima et and al. (2015).Results in Table (4) and Figure (3) also show that all the tested antagonistic rhizobacteria (PGPR) inhibited growth of the tested pathogenic fungi, The highest reduction of the tested pathogenic linear mycelial growth was displayed by P.

fluorescens followed by B. polymyxa, Rhizobium sp. isolate (Rh3) and B. subtilis bioagents, respectively, then B. megaterium, except in case of M. phaseolina non antagonistic observed. The other tested antagonistic rhizobacteria showed moderate reduction of linear mycelia growth of the tested pathogenic fungi. The lowest inhibition growth of the pathogenic fungi observed with Rhizobium sp. (Rh8). Bacterial bioagents showed antifungal potential against the tested fungi, which might be attributing to mechanism of diffusible antagonistic substances and volatile metabolites depending on the bacterium and the pathogen combination. The diffusible substances include antibiotics (pyrrolnitrin) and siderophores (enterobactin aerobactin) and and volatilic metabolites include hydrogen cyanide and acetoin (Neupane et al., 2013; Rakh et al., 2011).

Isolates	Mycelial growth inhibition (%)					
isolates	R. solani R2 M. phaseolina M1		F. solani F 5	Mean		
Trichoderma sp. (T1)	26.9	22.17	26.35	25.1		
Trichoderma sp. (T2)	39.95	34.67	59.8	44.8		
Trichoderma sp. (T3)	57.72	48.35	73.02	59.6		
Trichoderma sp. (T4)	15.5	18.57	14.97	16.3		
Trichoderma sp. (T5)	28.82	23.05	13.85	21.9		
Trichoderma sp. (T6)	29.4	20.22	19.12	22.9		
Trichoderma sp. (T7)	9.12	27.45	25.5	20.6		
Trichoderma sp. (T8)	22.45	14.12	23.85	20.1		
Control	0	0	0	-		
L.S.D. at 5%	5.40	6.73	4.35			

Table 3: Effect of some antagonistic fungi on mycelial growth of the tested fungi in vitro.

Effect of seed or soil treatment with bio-control agents on incidence of roo trot and damping-off diseases of fenugreek caused by three tested fungi under greenhouse conditions: Effect of soil treatment with highly antagonistic fungi (*T. harzianum* and *T. hamatum* and seed treatment with highly antagonistic rhizobacteria (PGPR) *B. subtilis*, *P. fluorescens*, *B. polymyxa* and

Ali et al., 2018

B.megaterium and Rhizobium sp. isolate (Rh3) on incidence of root rot and damping-off diseases of fenugreek plants (Giza 2 cv.) caused by the tested fungi carried under was out greenhouse 2015 conditions during and 2016 growing seasons. Data presented in Tables (5 and 6) show that treated seeds with each of antagonistic rhizobacteria and treated soil with antagonistic fungi significantly reduced the percentage of disease severity of root rot disease as well as pre and post the emergence damping-off disease of fenugreek caused with the tested fungi and increased survival plant compared with the control.

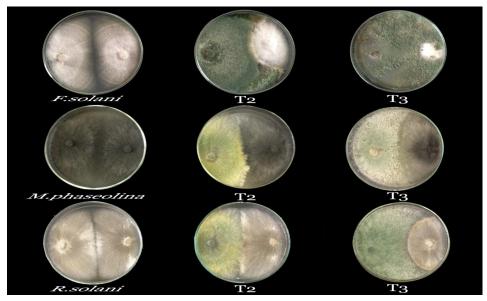


Figure 2: Effect of *T. harzianum* (T3) and *T. hamatum* (T2) on mycelial growth of the tested pathogenic fungi *in vitro*. Where: T3=T. *harzianum*, T2=T. *hamatum*.

TT1 (()) () ()	Mycelial growth inhibition (%)					
The tested rhizobacteria	R. solani R2	M. phaseolina M1	F. solani F5	Mean		
P. fluorescens	72.45	59.67	80.87	70.9		
B. subtilis	24.95	35.37	48.57	36.2		
B. polymyxa	51.9	41.62	56.2	49.9		
B. megaterium	45.1	0	62.45	35.8		
Rhizobium spp. Rh1	32.21	26.38	38.58	32.3		
Rhizobium spp. Rh2	26.66	0	31.66	19.4		
Rhizobium spp. Rh3	38.28	36.06	45.94	40		
Rhizobium spp. Rh4	22.21	31.38	36.06	29.8		
Rhizobium spp. Rh5	28.88	19.44	29.44	25.9		
Rhizobium spp. Rh6	24.99	23.88	34.69	27.8		
Rhizobium spp. Rh7	35.80	29.16	22.22	29		
Rhizobium spp. Rh8	16.94	0	14.72	10.5		
Rhizobium spp. Rh9	18.33	16.38	26.66	20.4		
Control	0	0	0	-		
L.S.D. at 5%	6.75	6.45	6.46	-		

Table 4: Effect of some antagonistic rhizobacteria on mycelial growth of the tested fungi in vitro.

Figure 3: Effect of some antagonistic rhizobacteria on mycelial growth of the tested fungi *in vitro*. Where: P.f = P. fluorescens, B.s = B. subtilis, B.m = B. megaterium, B.p = B. polymyxa and Rh3 = *Rhizobium* sp.

Table 5: Effect of different bio-agen	its on incidence of root rot disease of fenugreek under
greenhouse conditions	during 2015 and 2016 growing seasons.

		Root rot severity %				
Bioagents	Pathogens	Season	2015	Season 2016		
-	-	Root rot	Mean	Root rot	Mean	
	F. solani	30.81		21.25		
P. fluorescens	R. solani	27.69	26.1	28.12	22.7	
	M. phaseolina	20		18.75		
	F. solani	28.63		25.95		
B. subtilis	R. solani	30.12	28.3	30.83	26.9	
	M. phaseolina	26.3		24.16		
	F. solani	35.41		29.30		
B. polymayxa	R. solani	32.5	30.5	33.12	27.8	
	M. phaseolina	23.75		21.10		
	F. solani	37.25		31.25		
B. megaterum	R. solani	35	32.2	34.37	29.3	
U U	M. phaseolina	24.57		22.5		
	F. solani	12.5		13.12		
T. harzianum	R. solani	20.81	17.2	20.27	17.6	
	M. phaseolina	18.43		19.65		
	F. solani	19.37		17.5		
T. hamatum	R. solani	26.10	23.4	24.86	21.5	
	M. phaseolina	24.86		22.43		
	F. solani	21.37		18.75		
Rhizobium spp.Rh3	R. solani	24.65	22.6	23.12	20.8	
	M. phaseolina	21.87		20.76		
	F. solani	81.25		75.62		
Control	R. solani	76.04	76.6	73.95	73.4	
	M. phaseolina	72.65		70.08		
L.S.D. at 5% for	•					
Bioagents (A)		0.73		0.71		
Pathogen (B)		0.39		0.38		
Interaction (A×B)		1.13		1.08		

Trichoderma harzianum followed by Rhizobium sp. isolate (Rh3), and then Trichoderma hamatum gave the best reduction of root rot disease of fenugreek during two successive seasons. In treated seeds with *B. megaterium* followed by *B.* polymyxa gave the lowest percentage of disease severity of root rot disease during 2015 and 2016 growing seasons. The other treatments showed moderate effect of root rot disease. Concerning with damping-off disease T.harzianum followed by Rhizobium sp. (Rh3) Then P. fluorescens gave the best reduction of damping-off disease percentage. While treated seed with P. Polymyxa followed by *B.subtilis* gave the lowest percentage of damping-off disease. Treated seed with antagonistic rhizobateria and treated soil with antagonistic fungi in infested soil with R. solani was recorded the highest root rot disease severity followed by F. Solani then M. phaseolina. These results are in the same trend with that obtained by Haque and Ghaffar (1992), Shaban and El-Bramawy (2011), El-Mohamdy and Abd Alla (2013) and Farfour- Safinaz and Mahmoud (2014). The results might be attributed to biocontrol agents comprise of multiple beneficial characters such as rhizosphere competence, antagonistic potential, and ability to produce antibiotics, lytic enzymes and toxins.

 Table 6: Effect of different bio-agents on incidence of damping-off disease of fenugreek under greenhouse conditions during 2015 and 2016 growing seasons.

					Dampir	ng-off %			
Bioagents	Pathogens	Season 2015		Mean	Season 2016				
	-	Pre.	Post	Survival	wiean	Pre	Post	Survival	Mean
	F. solani	5	0	95		2.5	2.5	95	
P. fluorescens	R. solani	15	0	85	91.6	12.5	2.5	85	92.5
	M. phaseolina	5	0	95		2.5	0	97.5	
	F. solani	12.5	0	87.5		10	0	90	
B. subtilis	R. solani	12.5	0	87.5	85.8	10	2.5	87.5	90
	M. phaseolina	7.5	0	92.5		7.5	0	92.5	
	F. solani	15	2.5	82.5		12.5	2.5	85	
B. polymayxa	R. solani	17.5	2.5	80	84.1	15	0	85	87.5
	M. phaseolina	7.5	2.5	90		5	2.5	92.5	
	F. solani	7.5	2.5	90		7.5	0	92.5	
B. megaterum	R. solani	10	2.5	87.5	90.8	7.5	2.5	90	93.3
0	M. phaseolina	5	0	95		2.5	0	97.5	
	F. solani	5	0	95		0	2.5	97.5	
T. harzianum	R. solani	12.5	0	87.5	94.1	10	0	90	95.8
	M. phaseolina	0	0	100		0	0	100	
	F. solani	12.5	2.5	85		10	0	90	
T. hamatum	R. solani	10	2.5	87.5	88.3	12.5	0	87.5	90.8
	M. phaseolina	5	2.5	92.5		5	0	95	
	F. solani	7.5	5	87.5		7.5	0	92.5	
Rhizobium spp.Rh3	R. solani	7.5	5	87.5	91.6	10	0	90	93.3
	M. phaseolina	0	0	100		2.5	0	97.5	
	F. solani	57.5	0	42.5		52.5	2.5	45	
Control	R. solani	70	5	25	43.3	72.5	0	27.5	45.8
	M. phaseolina	37.5	0	62.5		30	5	65	
L.S.D. at 5% for	•								
Bioagents (A)		0.41	0.30	-		0.36	0.38	-	
Pathogen (B)		0.24	0.25	-		0.21	0.23	-	
Interaction (A×B)		0.68	0.73	-		0.59	0.67	-	

These biological control activities are either exerted directly through antagonism of soil-borne pathogens or indirectly by eliciting a plant-mediated resistance response. The mechanisms of biocontrol involve antibiosis, parasitism, competition for nutrients and space, cell wall degradation by lytic enzymes and induced disease resistance (Singh, 2014). Generally, the use of Trichoderma spp. and rhizobacteria (PGPR) have greatly reduced the pre and post emergence damping-off and root rot incidence, as well as enhanced the growth of fenugreek plants. The use of bioagents is highly beneficial as environmentally friendly application and can be used as an alternative for fungicides to enhance the growth plant and reduce disease incidence, resulting in higher yield.

References

- Abd-Alla MA, El-Mohamedy RSR, El-Mougy Nehal S, 2007. Control of sour rot disease of lime fruits using saprophytic isolates of yeast. Egyptian Journal of Phytopathology **35**(2): 39–51.
- Abdel-Kader MM, El-Mougy Nehal S, Aly MDE, Lashin SM, 2012. Different approaches of bio-control agents for controlling root rot incidence of some vegetables under greenhouse conditions. International Journal of Agriculture and Forestry **2**(1): 115–127.
- Abdel-Kader MM, El-Mougy NS, Ashour AMA, 2002. Suppression of root rot incidence in faba bean fields by using certain isolates of *Trichoderma*. Egypt Journal of Phytopathology **30**: 15–25.

- Abo-Elyousr KAM, Zein El-Abdean W, Hassan MHA, El-Sheakh MM, 2014. Enhance Suppressive Effect of Compost on Soybean Rhizoctonia Root Rot by Soil Treatment with *Trichoderma harzianum*. Journal of Plant Physiology & Pathology **2**(2): 1–6.
- Acharya SN, Basu SK, Thomas JE, 2007a. Medicinal properties of fenugreek (*Trigonella foenumgraecum* L.): a review of the evidence based studies. In: Acharya SN, Thomas JE (eds) Advances in medicinal plant research, 1st ed. Research Signpost, Kerala, India, 81– 122 pp.
- Acharya SN, Thomas JE, Basu SK 2007b. Breeding of fenugreek (*Trigonella foenum-graecum* L.): a self-pollinating crop. In: Acharya SN, Thomas JE (eds) Advances in medicinal plant research, Isted. Research Signpost, Kerala, India, 491–512 pp.
- Adekunle AT, Ikotun T, Florini DA, Cardwell KF, 2006. Field evaluation of selected formulations of Trichoderma species as seed treatment to control damping-off of cowpea caused by *Macrophomina phaseolina*. African Journal of Biotechnology **5**(5): 419–424.
- Ahmed Hoda AM, Abd El-Moneem KMH, Allam AD, Fahmy FGM, 2000. Biological control of root-rot and wilt diseases of cotton. Assiut Journal of Agricultural Sciences **31**: 269–286
- Barnett HL, Hunter B, 1972. Illustrated genera of imperfect fungi. Burgess Publishing Company, USA.
- Belete E, Ayalew A, Ahmed S, 2015. Evaluation of local isolates of *Trichoderma* spp. against black root Rot (*Fusarium solani*) on faba bean. Journal

of Plant Pathology and Microbiology **6**(6): 279

- Booth C, 1985. The genus *Fusarium*. Kew, Surrey Commonwealth Mycological Institute, 2nd Ed., 237 pp.
- Bukhari SB, Bhanger MI, Memon S, 2008.
 Antioxidative activity of extracts from fenugreek seeds (*Trigonella foenumgraecum*). Pakistan Journal of Analytical & Environmental Chemistry 9(2): 78–83.
- Chet I, Benhamou N, Haran S, 1998. Mycoparasitism and lytic enzymes. In: Harman, G.E. & Kubicek, C.P. (Eds.) Trichoderma and Gliocladium. Vol. 2, Enzymes, biological control and commercial application. Taylor and Francis Ltd., London, United Kingdom, 153–171 pp.
- Chet J, 1990. Mycoparasitism recognition, physiology and ecology. In: Baker, R.R. & Dunn, P.E. (Eds) New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases. New York: Alan R. Liss Inc., USA, 725–733 pp.
- Chhibba IM, Kanwar JS, Nayyar VK, 2000. Yield and nutritive values of different varieties of fenugreek (*Trigonella spp.*). Journal of Vegetation Science **27**: 176– 179.
- Coskuntuna A, Ozer N, 2008. Biological control of onion basal rot disease using *Trichoderma harzianum* and induction of antifungal compounds in onion set following seed treatment. Crop Protection **27**: 330–336.
- Dhingra OD, Sinclair JB, 1985. Basic plant pathology methods. CRC, Boca Raton, Florida, USA.

- Dorrance AE, Kleinhenz MD, Mcclure SA, Tuttle NT, 2003. Temperature, mois-ture, and seed treatment effects on *Rhizoctonia solani* root rot of soybean. Plant Disease **87**: 533–538.
- El-Helaly AF, Elaros H, Assawah MW, Abol-wafa MT, 1970. Studies on damping-off and root-rots of bean in UAR (Egypt). Egypt J Phytopathol, 2: 41-57.
- El-Mohamedy RSR, Abd Alla MA, 2013. Bio-priming seed treatment for biological control of soil borne fungi causing root rot of green bean (*Phaseolus vulgaris* L.). Journal of Agricultural Technology **9**(3): 589–599.
- El-sayed Sahar A. Mousa Abeer M. 2015. Effect of some algal filtrates and chemical inducers on root-rot incidence of faba bean. Agricultural Research & Technology 1(1): 1–5.
- Farfour Safinaz A, Mahmoud AA, 2014. Root-rot and stem-canker control in faba bean plants by using some biofertilizer agents. Journal of Plant Pathology and Microbiology **5**(1): 1–6.
- Gomez KA, Gomez AA, 1984. Statistical procedures for agriculture research. Second edition, John Wiley & Sons, Inc., New York, USA, 680 pp.
- Haggag Karima HE, Elshahawy IE, Abd-El-Khair H, 2015. Antagonistic Activity of *Bacillus* and *Pseudomonas* Isolates Alone or in Combination with Fungicides Against Some Soil Borne Plant Pathogen under Laboratory and Greenhouse Conditions. Middle-East Journal of Scientific Research, 23(10): 2354–2365.

- Haque SE, Ghaffar A, 1992. Efficacy of *Trichoderma* spp., and *Rhizobium meliloti* in the control of root rot of Fenugreek. Pakistan Journal of Botany 24(2): 217–221.
- Howell CR, 1998. The role of antibiosis. In: Harman, G.E. & Kubicek, C.P. (Eds.) *Trichoderma* and *Gliocladium*. Vol 2. Enzymes, biological control, and commercial applications. Taylor & Francis, London, United Kingdom, 173– 184 pp.
- Jain RK, Arachana S, Sharma DK, 2012. Isolation of crop specific indigenous strains and study their effects on seed germination *Rhizobium*. Indian Journal of Life Sciences **2**(1): 41–45.
- Khokhar MK, Renu G, Deependra P, 2012. Efficacy of fungicides and plant extracts against *Fusarium* wilt in fenugreek. International Journal of Plant Protection **5**(2): 417–419.
- Kubicek CP, Harman GE, 2002. Trichoderma and Gliocladium: Basic Biology, Taxonomy and Genetics, 1: 278.
- Manoj KM, Ramji S, Ajay T, 2014. *In vitro* evaluation of antagonistic activity of *Pseudomonas fluorescens* against fungal pathogen. Journal of Biopesticides **7**(1): 43–46.
- Mishar DS, Kumar A, Prajapati CR, Singh AK, Sharma SD, 2013. Identification of compatible bacterial and fungal isolate and their effectiveness against plant disease. Journal of Environmental Biology **34**(2): 183–189.
- Mohamed IH, Ali SA, Abbas Entsar EA, 2013. Evaluation of compost and compost extract efficiency as bio-control agents on damping-off disease incidence of fenugreek (*Trigonella foenum*-

greacum). Zagazig Journal of Agricultural Research **40**(2): 239–249.

- Munees A, Mulugeta K, 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective Journal of King Saud University – Science **26**: 1–20.
- Nagananda GS, Das A, Bhattacharya S, Kalpana T, 2010. *In vitro* Studies on the effect of biofertilizers (*Azotobacter* and *Rhizobium*) on seed germination and development of *Trigonella foenumgraecum* L. using a novel glass marble containing liquid medium. International Journal of Botany **6**(4): 394–403.
- Neupane S, Goodwin LA, Hogberg N, 2013. Non-contiguous finished genome sequence of plant-growth promoting *Serratia proteamaculans* S4. Standards in Genomic Sciences **8**: 441–449.
- Rakh RR, Raut SL, Dalvi MS, Manwar VA, 2011. Biological control of *Sclerotium rolfsii*, causing stem rot of groundnut by *Pseudomonas* cf. *monteilii* 9. J Recent Research in Science and Technology 3(3): 26–34.
- Rakib AA, Mustafa AA, Mahdi Majda H, Hadi MA, 2012. *Rhizobium japonicum* as a biocontrol agent of soybean root rot disease caused by *Fusarium solani* and *Macrophomina phaseolina*. Plant Protection Science **48**(4): 149–155.
- Nashwa A, Sallam Riad Shaima N. Mohamed SM. Ahmed S, 2013. Formulation of Bacillus spp. and Pseudomonas fluorescens for biocontrol of cantaloupe root rot caused by Journal of Plant Fusarium solani. Protection Research **53**(3): 296–300.
- Schirmbock M, Lorito M, Hayes CK, Arisan-Atac I, Scla F, Harman GE, Kubicek CP,

1994. Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of *Trichoderma harzianum* against phytopathogenic fungi. Applied and Environmental Microbiology **60**: 4364– 4370.

- Shaban WI, El-Bramawy MA, 2011. Impact of dual inoculation with *Rhizobium* and *Trichoderma* on damping off, root rot diseases and plant growth parameters of some legumes field crop under greenhouse conditions. International Research Journal of Agricultural Science and Soil Science **1**(3): 98–108.
- Singh HB, 2014. Management of Plant Pathogens with Microorganisms. Proceedings of the Indian National Science Academy **80**(2): 443–454.
- USDA, 2001. Nutrient database for standard reference: Release 14. USDA, Washington, DC. Watson, D.J., 1952. The physiological basis of variation in yield. Advances in Agronomy **4**: 101– 145

- Vincent JM, 1970. A manual for the practical study of root nodule bacteria. IBP Hand book No. 15, Blackwell publication, oxford, U.K.
- Vishal KD, Abhishek C, 2014. Isolation and Characterization of *Rhizobium leguminosarum* from Root nodule of *Pisum sativum* L. Journal of Academia and Industrial Research 2(8): 464–467.
- Waksman SA, 1922. A method for counting the number of fungi in the soil. Journal of Bacteriology **7**: 339–341.
- Yadav VK, Anamika T, 2005. Variability in the isolates of *Rhizoctonia solani* the incident of damping–off of fenugreek. Journal of Mycopathological Research **43**(2): 219–221.